|
- // Copyright 2015 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
-
- package bidi
-
- import (
- "container/list"
- "fmt"
- "sort"
- )
-
- // This file contains a port of the reference implementation of the
- // Bidi Parentheses Algorithm:
- // https://www.unicode.org/Public/PROGRAMS/BidiReferenceJava/BidiPBAReference.java
- //
- // The implementation in this file covers definitions BD14-BD16 and rule N0
- // of UAX#9.
- //
- // Some preprocessing is done for each rune before data is passed to this
- // algorithm:
- // - opening and closing brackets are identified
- // - a bracket pair type, like '(' and ')' is assigned a unique identifier that
- // is identical for the opening and closing bracket. It is left to do these
- // mappings.
- // - The BPA algorithm requires that bracket characters that are canonical
- // equivalents of each other be able to be substituted for each other.
- // It is the responsibility of the caller to do this canonicalization.
- //
- // In implementing BD16, this implementation departs slightly from the "logical"
- // algorithm defined in UAX#9. In particular, the stack referenced there
- // supports operations that go beyond a "basic" stack. An equivalent
- // implementation based on a linked list is used here.
-
- // Bidi_Paired_Bracket_Type
- // BD14. An opening paired bracket is a character whose
- // Bidi_Paired_Bracket_Type property value is Open.
- //
- // BD15. A closing paired bracket is a character whose
- // Bidi_Paired_Bracket_Type property value is Close.
- type bracketType byte
-
- const (
- bpNone bracketType = iota
- bpOpen
- bpClose
- )
-
- // bracketPair holds a pair of index values for opening and closing bracket
- // location of a bracket pair.
- type bracketPair struct {
- opener int
- closer int
- }
-
- func (b *bracketPair) String() string {
- return fmt.Sprintf("(%v, %v)", b.opener, b.closer)
- }
-
- // bracketPairs is a slice of bracketPairs with a sort.Interface implementation.
- type bracketPairs []bracketPair
-
- func (b bracketPairs) Len() int { return len(b) }
- func (b bracketPairs) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
- func (b bracketPairs) Less(i, j int) bool { return b[i].opener < b[j].opener }
-
- // resolvePairedBrackets runs the paired bracket part of the UBA algorithm.
- //
- // For each rune, it takes the indexes into the original string, the class the
- // bracket type (in pairTypes) and the bracket identifier (pairValues). It also
- // takes the direction type for the start-of-sentence and the embedding level.
- //
- // The identifiers for bracket types are the rune of the canonicalized opening
- // bracket for brackets (open or close) or 0 for runes that are not brackets.
- func resolvePairedBrackets(s *isolatingRunSequence) {
- p := bracketPairer{
- sos: s.sos,
- openers: list.New(),
- codesIsolatedRun: s.types,
- indexes: s.indexes,
- }
- dirEmbed := L
- if s.level&1 != 0 {
- dirEmbed = R
- }
- p.locateBrackets(s.p.pairTypes, s.p.pairValues)
- p.resolveBrackets(dirEmbed, s.p.initialTypes)
- }
-
- type bracketPairer struct {
- sos Class // direction corresponding to start of sequence
-
- // The following is a restatement of BD 16 using non-algorithmic language.
- //
- // A bracket pair is a pair of characters consisting of an opening
- // paired bracket and a closing paired bracket such that the
- // Bidi_Paired_Bracket property value of the former equals the latter,
- // subject to the following constraints.
- // - both characters of a pair occur in the same isolating run sequence
- // - the closing character of a pair follows the opening character
- // - any bracket character can belong at most to one pair, the earliest possible one
- // - any bracket character not part of a pair is treated like an ordinary character
- // - pairs may nest properly, but their spans may not overlap otherwise
-
- // Bracket characters with canonical decompositions are supposed to be
- // treated as if they had been normalized, to allow normalized and non-
- // normalized text to give the same result. In this implementation that step
- // is pushed out to the caller. The caller has to ensure that the pairValue
- // slices contain the rune of the opening bracket after normalization for
- // any opening or closing bracket.
-
- openers *list.List // list of positions for opening brackets
-
- // bracket pair positions sorted by location of opening bracket
- pairPositions bracketPairs
-
- codesIsolatedRun []Class // directional bidi codes for an isolated run
- indexes []int // array of index values into the original string
-
- }
-
- // matchOpener reports whether characters at given positions form a matching
- // bracket pair.
- func (p *bracketPairer) matchOpener(pairValues []rune, opener, closer int) bool {
- return pairValues[p.indexes[opener]] == pairValues[p.indexes[closer]]
- }
-
- const maxPairingDepth = 63
-
- // locateBrackets locates matching bracket pairs according to BD16.
- //
- // This implementation uses a linked list instead of a stack, because, while
- // elements are added at the front (like a push) they are not generally removed
- // in atomic 'pop' operations, reducing the benefit of the stack archetype.
- func (p *bracketPairer) locateBrackets(pairTypes []bracketType, pairValues []rune) {
- // traverse the run
- // do that explicitly (not in a for-each) so we can record position
- for i, index := range p.indexes {
-
- // look at the bracket type for each character
- if pairTypes[index] == bpNone || p.codesIsolatedRun[i] != ON {
- // continue scanning
- continue
- }
- switch pairTypes[index] {
- case bpOpen:
- // check if maximum pairing depth reached
- if p.openers.Len() == maxPairingDepth {
- p.openers.Init()
- return
- }
- // remember opener location, most recent first
- p.openers.PushFront(i)
-
- case bpClose:
- // see if there is a match
- count := 0
- for elem := p.openers.Front(); elem != nil; elem = elem.Next() {
- count++
- opener := elem.Value.(int)
- if p.matchOpener(pairValues, opener, i) {
- // if the opener matches, add nested pair to the ordered list
- p.pairPositions = append(p.pairPositions, bracketPair{opener, i})
- // remove up to and including matched opener
- for ; count > 0; count-- {
- p.openers.Remove(p.openers.Front())
- }
- break
- }
- }
- sort.Sort(p.pairPositions)
- // if we get here, the closing bracket matched no openers
- // and gets ignored
- }
- }
- }
-
- // Bracket pairs within an isolating run sequence are processed as units so
- // that both the opening and the closing paired bracket in a pair resolve to
- // the same direction.
- //
- // N0. Process bracket pairs in an isolating run sequence sequentially in
- // the logical order of the text positions of the opening paired brackets
- // using the logic given below. Within this scope, bidirectional types EN
- // and AN are treated as R.
- //
- // Identify the bracket pairs in the current isolating run sequence
- // according to BD16. For each bracket-pair element in the list of pairs of
- // text positions:
- //
- // a Inspect the bidirectional types of the characters enclosed within the
- // bracket pair.
- //
- // b If any strong type (either L or R) matching the embedding direction is
- // found, set the type for both brackets in the pair to match the embedding
- // direction.
- //
- // o [ e ] o -> o e e e o
- //
- // o [ o e ] -> o e o e e
- //
- // o [ NI e ] -> o e NI e e
- //
- // c Otherwise, if a strong type (opposite the embedding direction) is
- // found, test for adjacent strong types as follows: 1 First, check
- // backwards before the opening paired bracket until the first strong type
- // (L, R, or sos) is found. If that first preceding strong type is opposite
- // the embedding direction, then set the type for both brackets in the pair
- // to that type. 2 Otherwise, set the type for both brackets in the pair to
- // the embedding direction.
- //
- // o [ o ] e -> o o o o e
- //
- // o [ o NI ] o -> o o o NI o o
- //
- // e [ o ] o -> e e o e o
- //
- // e [ o ] e -> e e o e e
- //
- // e ( o [ o ] NI ) e -> e e o o o o NI e e
- //
- // d Otherwise, do not set the type for the current bracket pair. Note that
- // if the enclosed text contains no strong types the paired brackets will
- // both resolve to the same level when resolved individually using rules N1
- // and N2.
- //
- // e ( NI ) o -> e ( NI ) o
-
- // getStrongTypeN0 maps character's directional code to strong type as required
- // by rule N0.
- //
- // TODO: have separate type for "strong" directionality.
- func (p *bracketPairer) getStrongTypeN0(index int) Class {
- switch p.codesIsolatedRun[index] {
- // in the scope of N0, number types are treated as R
- case EN, AN, AL, R:
- return R
- case L:
- return L
- default:
- return ON
- }
- }
-
- // classifyPairContent reports the strong types contained inside a Bracket Pair,
- // assuming the given embedding direction.
- //
- // It returns ON if no strong type is found. If a single strong type is found,
- // it returns this type. Otherwise it returns the embedding direction.
- //
- // TODO: use separate type for "strong" directionality.
- func (p *bracketPairer) classifyPairContent(loc bracketPair, dirEmbed Class) Class {
- dirOpposite := ON
- for i := loc.opener + 1; i < loc.closer; i++ {
- dir := p.getStrongTypeN0(i)
- if dir == ON {
- continue
- }
- if dir == dirEmbed {
- return dir // type matching embedding direction found
- }
- dirOpposite = dir
- }
- // return ON if no strong type found, or class opposite to dirEmbed
- return dirOpposite
- }
-
- // classBeforePair determines which strong types are present before a Bracket
- // Pair. Return R or L if strong type found, otherwise ON.
- func (p *bracketPairer) classBeforePair(loc bracketPair) Class {
- for i := loc.opener - 1; i >= 0; i-- {
- if dir := p.getStrongTypeN0(i); dir != ON {
- return dir
- }
- }
- // no strong types found, return sos
- return p.sos
- }
-
- // assignBracketType implements rule N0 for a single bracket pair.
- func (p *bracketPairer) assignBracketType(loc bracketPair, dirEmbed Class, initialTypes []Class) {
- // rule "N0, a", inspect contents of pair
- dirPair := p.classifyPairContent(loc, dirEmbed)
-
- // dirPair is now L, R, or N (no strong type found)
-
- // the following logical tests are performed out of order compared to
- // the statement of the rules but yield the same results
- if dirPair == ON {
- return // case "d" - nothing to do
- }
-
- if dirPair != dirEmbed {
- // case "c": strong type found, opposite - check before (c.1)
- dirPair = p.classBeforePair(loc)
- if dirPair == dirEmbed || dirPair == ON {
- // no strong opposite type found before - use embedding (c.2)
- dirPair = dirEmbed
- }
- }
- // else: case "b", strong type found matching embedding,
- // no explicit action needed, as dirPair is already set to embedding
- // direction
-
- // set the bracket types to the type found
- p.setBracketsToType(loc, dirPair, initialTypes)
- }
-
- func (p *bracketPairer) setBracketsToType(loc bracketPair, dirPair Class, initialTypes []Class) {
- p.codesIsolatedRun[loc.opener] = dirPair
- p.codesIsolatedRun[loc.closer] = dirPair
-
- for i := loc.opener + 1; i < loc.closer; i++ {
- index := p.indexes[i]
- if initialTypes[index] != NSM {
- break
- }
- p.codesIsolatedRun[i] = dirPair
- }
-
- for i := loc.closer + 1; i < len(p.indexes); i++ {
- index := p.indexes[i]
- if initialTypes[index] != NSM {
- break
- }
- p.codesIsolatedRun[i] = dirPair
- }
- }
-
- // resolveBrackets implements rule N0 for a list of pairs.
- func (p *bracketPairer) resolveBrackets(dirEmbed Class, initialTypes []Class) {
- for _, loc := range p.pairPositions {
- p.assignBracketType(loc, dirEmbed, initialTypes)
- }
- }
|