|
- // Copyright 2011 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
-
- // Package s2k implements the various OpenPGP string-to-key transforms as
- // specified in RFC 4800 section 3.7.1.
- package s2k // import "golang.org/x/crypto/openpgp/s2k"
-
- import (
- "crypto"
- "hash"
- "io"
- "strconv"
-
- "golang.org/x/crypto/openpgp/errors"
- )
-
- // Config collects configuration parameters for s2k key-stretching
- // transformatioms. A nil *Config is valid and results in all default
- // values. Currently, Config is used only by the Serialize function in
- // this package.
- type Config struct {
- // Hash is the default hash function to be used. If
- // nil, SHA1 is used.
- Hash crypto.Hash
- // S2KCount is only used for symmetric encryption. It
- // determines the strength of the passphrase stretching when
- // the said passphrase is hashed to produce a key. S2KCount
- // should be between 1024 and 65011712, inclusive. If Config
- // is nil or S2KCount is 0, the value 65536 used. Not all
- // values in the above range can be represented. S2KCount will
- // be rounded up to the next representable value if it cannot
- // be encoded exactly. When set, it is strongly encrouraged to
- // use a value that is at least 65536. See RFC 4880 Section
- // 3.7.1.3.
- S2KCount int
- }
-
- func (c *Config) hash() crypto.Hash {
- if c == nil || uint(c.Hash) == 0 {
- // SHA1 is the historical default in this package.
- return crypto.SHA1
- }
-
- return c.Hash
- }
-
- func (c *Config) encodedCount() uint8 {
- if c == nil || c.S2KCount == 0 {
- return 96 // The common case. Correspoding to 65536
- }
-
- i := c.S2KCount
- switch {
- // Behave like GPG. Should we make 65536 the lowest value used?
- case i < 1024:
- i = 1024
- case i > 65011712:
- i = 65011712
- }
-
- return encodeCount(i)
- }
-
- // encodeCount converts an iterative "count" in the range 1024 to
- // 65011712, inclusive, to an encoded count. The return value is the
- // octet that is actually stored in the GPG file. encodeCount panics
- // if i is not in the above range (encodedCount above takes care to
- // pass i in the correct range). See RFC 4880 Section 3.7.7.1.
- func encodeCount(i int) uint8 {
- if i < 1024 || i > 65011712 {
- panic("count arg i outside the required range")
- }
-
- for encoded := 0; encoded < 256; encoded++ {
- count := decodeCount(uint8(encoded))
- if count >= i {
- return uint8(encoded)
- }
- }
-
- return 255
- }
-
- // decodeCount returns the s2k mode 3 iterative "count" corresponding to
- // the encoded octet c.
- func decodeCount(c uint8) int {
- return (16 + int(c&15)) << (uint32(c>>4) + 6)
- }
-
- // Simple writes to out the result of computing the Simple S2K function (RFC
- // 4880, section 3.7.1.1) using the given hash and input passphrase.
- func Simple(out []byte, h hash.Hash, in []byte) {
- Salted(out, h, in, nil)
- }
-
- var zero [1]byte
-
- // Salted writes to out the result of computing the Salted S2K function (RFC
- // 4880, section 3.7.1.2) using the given hash, input passphrase and salt.
- func Salted(out []byte, h hash.Hash, in []byte, salt []byte) {
- done := 0
- var digest []byte
-
- for i := 0; done < len(out); i++ {
- h.Reset()
- for j := 0; j < i; j++ {
- h.Write(zero[:])
- }
- h.Write(salt)
- h.Write(in)
- digest = h.Sum(digest[:0])
- n := copy(out[done:], digest)
- done += n
- }
- }
-
- // Iterated writes to out the result of computing the Iterated and Salted S2K
- // function (RFC 4880, section 3.7.1.3) using the given hash, input passphrase,
- // salt and iteration count.
- func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) {
- combined := make([]byte, len(in)+len(salt))
- copy(combined, salt)
- copy(combined[len(salt):], in)
-
- if count < len(combined) {
- count = len(combined)
- }
-
- done := 0
- var digest []byte
- for i := 0; done < len(out); i++ {
- h.Reset()
- for j := 0; j < i; j++ {
- h.Write(zero[:])
- }
- written := 0
- for written < count {
- if written+len(combined) > count {
- todo := count - written
- h.Write(combined[:todo])
- written = count
- } else {
- h.Write(combined)
- written += len(combined)
- }
- }
- digest = h.Sum(digest[:0])
- n := copy(out[done:], digest)
- done += n
- }
- }
-
- // Parse reads a binary specification for a string-to-key transformation from r
- // and returns a function which performs that transform.
- func Parse(r io.Reader) (f func(out, in []byte), err error) {
- var buf [9]byte
-
- _, err = io.ReadFull(r, buf[:2])
- if err != nil {
- return
- }
-
- hash, ok := HashIdToHash(buf[1])
- if !ok {
- return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(buf[1])))
- }
- if !hash.Available() {
- return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hash)))
- }
- h := hash.New()
-
- switch buf[0] {
- case 0:
- f := func(out, in []byte) {
- Simple(out, h, in)
- }
- return f, nil
- case 1:
- _, err = io.ReadFull(r, buf[:8])
- if err != nil {
- return
- }
- f := func(out, in []byte) {
- Salted(out, h, in, buf[:8])
- }
- return f, nil
- case 3:
- _, err = io.ReadFull(r, buf[:9])
- if err != nil {
- return
- }
- count := decodeCount(buf[8])
- f := func(out, in []byte) {
- Iterated(out, h, in, buf[:8], count)
- }
- return f, nil
- }
-
- return nil, errors.UnsupportedError("S2K function")
- }
-
- // Serialize salts and stretches the given passphrase and writes the
- // resulting key into key. It also serializes an S2K descriptor to
- // w. The key stretching can be configured with c, which may be
- // nil. In that case, sensible defaults will be used.
- func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Config) error {
- var buf [11]byte
- buf[0] = 3 /* iterated and salted */
- buf[1], _ = HashToHashId(c.hash())
- salt := buf[2:10]
- if _, err := io.ReadFull(rand, salt); err != nil {
- return err
- }
- encodedCount := c.encodedCount()
- count := decodeCount(encodedCount)
- buf[10] = encodedCount
- if _, err := w.Write(buf[:]); err != nil {
- return err
- }
-
- Iterated(key, c.hash().New(), passphrase, salt, count)
- return nil
- }
-
- // hashToHashIdMapping contains pairs relating OpenPGP's hash identifier with
- // Go's crypto.Hash type. See RFC 4880, section 9.4.
- var hashToHashIdMapping = []struct {
- id byte
- hash crypto.Hash
- name string
- }{
- {1, crypto.MD5, "MD5"},
- {2, crypto.SHA1, "SHA1"},
- {3, crypto.RIPEMD160, "RIPEMD160"},
- {8, crypto.SHA256, "SHA256"},
- {9, crypto.SHA384, "SHA384"},
- {10, crypto.SHA512, "SHA512"},
- {11, crypto.SHA224, "SHA224"},
- }
-
- // HashIdToHash returns a crypto.Hash which corresponds to the given OpenPGP
- // hash id.
- func HashIdToHash(id byte) (h crypto.Hash, ok bool) {
- for _, m := range hashToHashIdMapping {
- if m.id == id {
- return m.hash, true
- }
- }
- return 0, false
- }
-
- // HashIdToString returns the name of the hash function corresponding to the
- // given OpenPGP hash id.
- func HashIdToString(id byte) (name string, ok bool) {
- for _, m := range hashToHashIdMapping {
- if m.id == id {
- return m.name, true
- }
- }
-
- return "", false
- }
-
- // HashIdToHash returns an OpenPGP hash id which corresponds the given Hash.
- func HashToHashId(h crypto.Hash) (id byte, ok bool) {
- for _, m := range hashToHashIdMapping {
- if m.hash == h {
- return m.id, true
- }
- }
- return 0, false
- }
|