|
- // Copyright 2009 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
-
- package flate
-
- import (
- "math"
- "sort"
- )
-
- // hcode is a huffman code with a bit code and bit length.
- type hcode struct {
- code, len uint16
- }
-
- type huffmanEncoder struct {
- codes []hcode
- freqcache []literalNode
- bitCount [17]int32
- lns byLiteral // stored to avoid repeated allocation in generate
- lfs byFreq // stored to avoid repeated allocation in generate
- }
-
- type literalNode struct {
- literal uint16
- freq int32
- }
-
- // A levelInfo describes the state of the constructed tree for a given depth.
- type levelInfo struct {
- // Our level. for better printing
- level int32
-
- // The frequency of the last node at this level
- lastFreq int32
-
- // The frequency of the next character to add to this level
- nextCharFreq int32
-
- // The frequency of the next pair (from level below) to add to this level.
- // Only valid if the "needed" value of the next lower level is 0.
- nextPairFreq int32
-
- // The number of chains remaining to generate for this level before moving
- // up to the next level
- needed int32
- }
-
- // set sets the code and length of an hcode.
- func (h *hcode) set(code uint16, length uint16) {
- h.len = length
- h.code = code
- }
-
- func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
-
- func newHuffmanEncoder(size int) *huffmanEncoder {
- return &huffmanEncoder{codes: make([]hcode, size)}
- }
-
- // Generates a HuffmanCode corresponding to the fixed literal table
- func generateFixedLiteralEncoding() *huffmanEncoder {
- h := newHuffmanEncoder(maxNumLit)
- codes := h.codes
- var ch uint16
- for ch = 0; ch < maxNumLit; ch++ {
- var bits uint16
- var size uint16
- switch {
- case ch < 144:
- // size 8, 000110000 .. 10111111
- bits = ch + 48
- size = 8
- break
- case ch < 256:
- // size 9, 110010000 .. 111111111
- bits = ch + 400 - 144
- size = 9
- break
- case ch < 280:
- // size 7, 0000000 .. 0010111
- bits = ch - 256
- size = 7
- break
- default:
- // size 8, 11000000 .. 11000111
- bits = ch + 192 - 280
- size = 8
- }
- codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size}
- }
- return h
- }
-
- func generateFixedOffsetEncoding() *huffmanEncoder {
- h := newHuffmanEncoder(30)
- codes := h.codes
- for ch := range codes {
- codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5}
- }
- return h
- }
-
- var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
- var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
-
- func (h *huffmanEncoder) bitLength(freq []int32) int {
- var total int
- for i, f := range freq {
- if f != 0 {
- total += int(f) * int(h.codes[i].len)
- }
- }
- return total
- }
-
- const maxBitsLimit = 16
-
- // Return the number of literals assigned to each bit size in the Huffman encoding
- //
- // This method is only called when list.length >= 3
- // The cases of 0, 1, and 2 literals are handled by special case code.
- //
- // list An array of the literals with non-zero frequencies
- // and their associated frequencies. The array is in order of increasing
- // frequency, and has as its last element a special element with frequency
- // MaxInt32
- // maxBits The maximum number of bits that should be used to encode any literal.
- // Must be less than 16.
- // return An integer array in which array[i] indicates the number of literals
- // that should be encoded in i bits.
- func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
- if maxBits >= maxBitsLimit {
- panic("flate: maxBits too large")
- }
- n := int32(len(list))
- list = list[0 : n+1]
- list[n] = maxNode()
-
- // The tree can't have greater depth than n - 1, no matter what. This
- // saves a little bit of work in some small cases
- if maxBits > n-1 {
- maxBits = n - 1
- }
-
- // Create information about each of the levels.
- // A bogus "Level 0" whose sole purpose is so that
- // level1.prev.needed==0. This makes level1.nextPairFreq
- // be a legitimate value that never gets chosen.
- var levels [maxBitsLimit]levelInfo
- // leafCounts[i] counts the number of literals at the left
- // of ancestors of the rightmost node at level i.
- // leafCounts[i][j] is the number of literals at the left
- // of the level j ancestor.
- var leafCounts [maxBitsLimit][maxBitsLimit]int32
-
- for level := int32(1); level <= maxBits; level++ {
- // For every level, the first two items are the first two characters.
- // We initialize the levels as if we had already figured this out.
- levels[level] = levelInfo{
- level: level,
- lastFreq: list[1].freq,
- nextCharFreq: list[2].freq,
- nextPairFreq: list[0].freq + list[1].freq,
- }
- leafCounts[level][level] = 2
- if level == 1 {
- levels[level].nextPairFreq = math.MaxInt32
- }
- }
-
- // We need a total of 2*n - 2 items at top level and have already generated 2.
- levels[maxBits].needed = 2*n - 4
-
- level := maxBits
- for {
- l := &levels[level]
- if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
- // We've run out of both leafs and pairs.
- // End all calculations for this level.
- // To make sure we never come back to this level or any lower level,
- // set nextPairFreq impossibly large.
- l.needed = 0
- levels[level+1].nextPairFreq = math.MaxInt32
- level++
- continue
- }
-
- prevFreq := l.lastFreq
- if l.nextCharFreq < l.nextPairFreq {
- // The next item on this row is a leaf node.
- n := leafCounts[level][level] + 1
- l.lastFreq = l.nextCharFreq
- // Lower leafCounts are the same of the previous node.
- leafCounts[level][level] = n
- l.nextCharFreq = list[n].freq
- } else {
- // The next item on this row is a pair from the previous row.
- // nextPairFreq isn't valid until we generate two
- // more values in the level below
- l.lastFreq = l.nextPairFreq
- // Take leaf counts from the lower level, except counts[level] remains the same.
- copy(leafCounts[level][:level], leafCounts[level-1][:level])
- levels[l.level-1].needed = 2
- }
-
- if l.needed--; l.needed == 0 {
- // We've done everything we need to do for this level.
- // Continue calculating one level up. Fill in nextPairFreq
- // of that level with the sum of the two nodes we've just calculated on
- // this level.
- if l.level == maxBits {
- // All done!
- break
- }
- levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
- level++
- } else {
- // If we stole from below, move down temporarily to replenish it.
- for levels[level-1].needed > 0 {
- level--
- }
- }
- }
-
- // Somethings is wrong if at the end, the top level is null or hasn't used
- // all of the leaves.
- if leafCounts[maxBits][maxBits] != n {
- panic("leafCounts[maxBits][maxBits] != n")
- }
-
- bitCount := h.bitCount[:maxBits+1]
- bits := 1
- counts := &leafCounts[maxBits]
- for level := maxBits; level > 0; level-- {
- // chain.leafCount gives the number of literals requiring at least "bits"
- // bits to encode.
- bitCount[bits] = counts[level] - counts[level-1]
- bits++
- }
- return bitCount
- }
-
- // Look at the leaves and assign them a bit count and an encoding as specified
- // in RFC 1951 3.2.2
- func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
- code := uint16(0)
- for n, bits := range bitCount {
- code <<= 1
- if n == 0 || bits == 0 {
- continue
- }
- // The literals list[len(list)-bits] .. list[len(list)-bits]
- // are encoded using "bits" bits, and get the values
- // code, code + 1, .... The code values are
- // assigned in literal order (not frequency order).
- chunk := list[len(list)-int(bits):]
-
- h.lns.sort(chunk)
- for _, node := range chunk {
- h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)}
- code++
- }
- list = list[0 : len(list)-int(bits)]
- }
- }
-
- // Update this Huffman Code object to be the minimum code for the specified frequency count.
- //
- // freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
- // maxBits The maximum number of bits to use for any literal.
- func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
- if h.freqcache == nil {
- // Allocate a reusable buffer with the longest possible frequency table.
- // Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit.
- // The largest of these is maxNumLit, so we allocate for that case.
- h.freqcache = make([]literalNode, maxNumLit+1)
- }
- list := h.freqcache[:len(freq)+1]
- // Number of non-zero literals
- count := 0
- // Set list to be the set of all non-zero literals and their frequencies
- for i, f := range freq {
- if f != 0 {
- list[count] = literalNode{uint16(i), f}
- count++
- } else {
- list[count] = literalNode{}
- h.codes[i].len = 0
- }
- }
- list[len(freq)] = literalNode{}
-
- list = list[:count]
- if count <= 2 {
- // Handle the small cases here, because they are awkward for the general case code. With
- // two or fewer literals, everything has bit length 1.
- for i, node := range list {
- // "list" is in order of increasing literal value.
- h.codes[node.literal].set(uint16(i), 1)
- }
- return
- }
- h.lfs.sort(list)
-
- // Get the number of literals for each bit count
- bitCount := h.bitCounts(list, maxBits)
- // And do the assignment
- h.assignEncodingAndSize(bitCount, list)
- }
-
- type byLiteral []literalNode
-
- func (s *byLiteral) sort(a []literalNode) {
- *s = byLiteral(a)
- sort.Sort(s)
- }
-
- func (s byLiteral) Len() int { return len(s) }
-
- func (s byLiteral) Less(i, j int) bool {
- return s[i].literal < s[j].literal
- }
-
- func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
-
- type byFreq []literalNode
-
- func (s *byFreq) sort(a []literalNode) {
- *s = byFreq(a)
- sort.Sort(s)
- }
-
- func (s byFreq) Len() int { return len(s) }
-
- func (s byFreq) Less(i, j int) bool {
- if s[i].freq == s[j].freq {
- return s[i].literal < s[j].literal
- }
- return s[i].freq < s[j].freq
- }
-
- func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
|