|
- // Copyright 2009 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
-
- package rsa
-
- import (
- "crypto"
- "crypto/subtle"
- "errors"
- "io"
- "math/big"
- )
-
- // This file implements encryption and decryption using PKCS#1 v1.5 padding.
-
- // PKCS1v15DecrypterOpts is for passing options to PKCS#1 v1.5 decryption using
- // the crypto.Decrypter interface.
- type PKCS1v15DecryptOptions struct {
- // SessionKeyLen is the length of the session key that is being
- // decrypted. If not zero, then a padding error during decryption will
- // cause a random plaintext of this length to be returned rather than
- // an error. These alternatives happen in constant time.
- SessionKeyLen int
- }
-
- // EncryptPKCS1v15 encrypts the given message with RSA and the padding scheme from PKCS#1 v1.5.
- // The message must be no longer than the length of the public modulus minus 11 bytes.
- //
- // The rand parameter is used as a source of entropy to ensure that encrypting
- // the same message twice doesn't result in the same ciphertext.
- //
- // WARNING: use of this function to encrypt plaintexts other than session keys
- // is dangerous. Use RSA OAEP in new protocols.
- func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) (out []byte, err error) {
- if err := checkPub(pub); err != nil {
- return nil, err
- }
- k := (pub.N.BitLen() + 7) / 8
- if len(msg) > k-11 {
- err = ErrMessageTooLong
- return
- }
-
- // EM = 0x00 || 0x02 || PS || 0x00 || M
- em := make([]byte, k)
- em[1] = 2
- ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):]
- err = nonZeroRandomBytes(ps, rand)
- if err != nil {
- return
- }
- em[len(em)-len(msg)-1] = 0
- copy(mm, msg)
-
- m := new(big.Int).SetBytes(em)
- c := encrypt(new(big.Int), pub, m)
-
- copyWithLeftPad(em, c.Bytes())
- out = em
- return
- }
-
- // DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5.
- // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
- //
- // Note that whether this function returns an error or not discloses secret
- // information. If an attacker can cause this function to run repeatedly and
- // learn whether each instance returned an error then they can decrypt and
- // forge signatures as if they had the private key. See
- // DecryptPKCS1v15SessionKey for a way of solving this problem.
- func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (out []byte, err error) {
- if err := checkPub(&priv.PublicKey); err != nil {
- return nil, err
- }
- valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext)
- if err != nil {
- return
- }
- if valid == 0 {
- return nil, ErrDecryption
- }
- out = out[index:]
- return
- }
-
- // DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5.
- // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
- // It returns an error if the ciphertext is the wrong length or if the
- // ciphertext is greater than the public modulus. Otherwise, no error is
- // returned. If the padding is valid, the resulting plaintext message is copied
- // into key. Otherwise, key is unchanged. These alternatives occur in constant
- // time. It is intended that the user of this function generate a random
- // session key beforehand and continue the protocol with the resulting value.
- // This will remove any possibility that an attacker can learn any information
- // about the plaintext.
- // See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA
- // Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology
- // (Crypto '98).
- //
- // Note that if the session key is too small then it may be possible for an
- // attacker to brute-force it. If they can do that then they can learn whether
- // a random value was used (because it'll be different for the same ciphertext)
- // and thus whether the padding was correct. This defeats the point of this
- // function. Using at least a 16-byte key will protect against this attack.
- func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) (err error) {
- if err := checkPub(&priv.PublicKey); err != nil {
- return err
- }
- k := (priv.N.BitLen() + 7) / 8
- if k-(len(key)+3+8) < 0 {
- return ErrDecryption
- }
-
- valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext)
- if err != nil {
- return
- }
-
- if len(em) != k {
- // This should be impossible because decryptPKCS1v15 always
- // returns the full slice.
- return ErrDecryption
- }
-
- valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key)))
- subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):])
- return
- }
-
- // decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if
- // rand is not nil. It returns one or zero in valid that indicates whether the
- // plaintext was correctly structured. In either case, the plaintext is
- // returned in em so that it may be read independently of whether it was valid
- // in order to maintain constant memory access patterns. If the plaintext was
- // valid then index contains the index of the original message in em.
- func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
- k := (priv.N.BitLen() + 7) / 8
- if k < 11 {
- err = ErrDecryption
- return
- }
-
- c := new(big.Int).SetBytes(ciphertext)
- m, err := decrypt(rand, priv, c)
- if err != nil {
- return
- }
-
- em = leftPad(m.Bytes(), k)
- firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
- secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
-
- // The remainder of the plaintext must be a string of non-zero random
- // octets, followed by a 0, followed by the message.
- // lookingForIndex: 1 iff we are still looking for the zero.
- // index: the offset of the first zero byte.
- lookingForIndex := 1
-
- for i := 2; i < len(em); i++ {
- equals0 := subtle.ConstantTimeByteEq(em[i], 0)
- index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
- lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
- }
-
- // The PS padding must be at least 8 bytes long, and it starts two
- // bytes into em.
- validPS := subtle.ConstantTimeLessOrEq(2+8, index)
-
- valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS
- index = subtle.ConstantTimeSelect(valid, index+1, 0)
- return valid, em, index, nil
- }
-
- // nonZeroRandomBytes fills the given slice with non-zero random octets.
- func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
- _, err = io.ReadFull(rand, s)
- if err != nil {
- return
- }
-
- for i := 0; i < len(s); i++ {
- for s[i] == 0 {
- _, err = io.ReadFull(rand, s[i:i+1])
- if err != nil {
- return
- }
- // In tests, the PRNG may return all zeros so we do
- // this to break the loop.
- s[i] ^= 0x42
- }
- }
-
- return
- }
-
- // These are ASN1 DER structures:
- // DigestInfo ::= SEQUENCE {
- // digestAlgorithm AlgorithmIdentifier,
- // digest OCTET STRING
- // }
- // For performance, we don't use the generic ASN1 encoder. Rather, we
- // precompute a prefix of the digest value that makes a valid ASN1 DER string
- // with the correct contents.
- var hashPrefixes = map[crypto.Hash][]byte{
- crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
- crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14},
- crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
- crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
- crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
- crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
- crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix.
- crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14},
- }
-
- // SignPKCS1v15 calculates the signature of hashed using RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5.
- // Note that hashed must be the result of hashing the input message using the
- // given hash function. If hash is zero, hashed is signed directly. This isn't
- // advisable except for interoperability.
- //
- // If rand is not nil then RSA blinding will be used to avoid timing side-channel attacks.
- //
- // This function is deterministic. Thus, if the set of possible messages is
- // small, an attacker may be able to build a map from messages to signatures
- // and identify the signed messages. As ever, signatures provide authenticity,
- // not confidentiality.
- func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) (s []byte, err error) {
- hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
- if err != nil {
- return
- }
-
- tLen := len(prefix) + hashLen
- k := (priv.N.BitLen() + 7) / 8
- if k < tLen+11 {
- return nil, ErrMessageTooLong
- }
-
- // EM = 0x00 || 0x01 || PS || 0x00 || T
- em := make([]byte, k)
- em[1] = 1
- for i := 2; i < k-tLen-1; i++ {
- em[i] = 0xff
- }
- copy(em[k-tLen:k-hashLen], prefix)
- copy(em[k-hashLen:k], hashed)
-
- m := new(big.Int).SetBytes(em)
- c, err := decryptAndCheck(rand, priv, m)
- if err != nil {
- return
- }
-
- copyWithLeftPad(em, c.Bytes())
- s = em
- return
- }
-
- // VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature.
- // hashed is the result of hashing the input message using the given hash
- // function and sig is the signature. A valid signature is indicated by
- // returning a nil error. If hash is zero then hashed is used directly. This
- // isn't advisable except for interoperability.
- func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) (err error) {
- hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
- if err != nil {
- return
- }
-
- tLen := len(prefix) + hashLen
- k := (pub.N.BitLen() + 7) / 8
- if k < tLen+11 {
- err = ErrVerification
- return
- }
-
- c := new(big.Int).SetBytes(sig)
- m := encrypt(new(big.Int), pub, c)
- em := leftPad(m.Bytes(), k)
- // EM = 0x00 || 0x01 || PS || 0x00 || T
-
- ok := subtle.ConstantTimeByteEq(em[0], 0)
- ok &= subtle.ConstantTimeByteEq(em[1], 1)
- ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed)
- ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix)
- ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0)
-
- for i := 2; i < k-tLen-1; i++ {
- ok &= subtle.ConstantTimeByteEq(em[i], 0xff)
- }
-
- if ok != 1 {
- return ErrVerification
- }
-
- return nil
- }
-
- func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) {
- // Special case: crypto.Hash(0) is used to indicate that the data is
- // signed directly.
- if hash == 0 {
- return inLen, nil, nil
- }
-
- hashLen = hash.Size()
- if inLen != hashLen {
- return 0, nil, errors.New("crypto/rsa: input must be hashed message")
- }
- prefix, ok := hashPrefixes[hash]
- if !ok {
- return 0, nil, errors.New("crypto/rsa: unsupported hash function")
- }
- return
- }
-
- // copyWithLeftPad copies src to the end of dest, padding with zero bytes as
- // needed.
- func copyWithLeftPad(dest, src []byte) {
- numPaddingBytes := len(dest) - len(src)
- for i := 0; i < numPaddingBytes; i++ {
- dest[i] = 0
- }
- copy(dest[numPaddingBytes:], src)
- }
|