|
- // Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
- //
- // Use of this source code is governed by an MIT-style
- // license that can be found in the LICENSE file.
-
- package sqlite3
-
- import (
- "crypto/sha1"
- "crypto/sha256"
- "crypto/sha512"
- )
-
- // This file provides several different implementations for the
- // default embedded sqlite_crypt function.
- // This function is uses a caesar-cypher by default
- // and is used within the UserAuthentication module to encode
- // the password.
- //
- // The provided functions can be used as an overload to the sqlite_crypt
- // function through the use of the RegisterFunc on the connection.
- //
- // Because the functions can serv a purpose to an end-user
- // without using the UserAuthentication module
- // the functions are default compiled in.
- //
- // From SQLITE3 - user-auth.txt
- // The sqlite_user.pw field is encoded by a built-in SQL function
- // "sqlite_crypt(X,Y)". The two arguments are both BLOBs. The first argument
- // is the plaintext password supplied to the sqlite3_user_authenticate()
- // interface. The second argument is the sqlite_user.pw value and is supplied
- // so that the function can extract the "salt" used by the password encoder.
- // The result of sqlite_crypt(X,Y) is another blob which is the value that
- // ends up being stored in sqlite_user.pw. To verify credentials X supplied
- // by the sqlite3_user_authenticate() routine, SQLite runs:
- //
- // sqlite_user.pw == sqlite_crypt(X, sqlite_user.pw)
- //
- // To compute an appropriate sqlite_user.pw value from a new or modified
- // password X, sqlite_crypt(X,NULL) is run. A new random salt is selected
- // when the second argument is NULL.
- //
- // The built-in version of of sqlite_crypt() uses a simple Caesar-cypher
- // which prevents passwords from being revealed by searching the raw database
- // for ASCII text, but is otherwise trivally broken. For better password
- // security, the database should be encrypted using the SQLite Encryption
- // Extension or similar technology. Or, the application can use the
- // sqlite3_create_function() interface to provide an alternative
- // implementation of sqlite_crypt() that computes a stronger password hash,
- // perhaps using a cryptographic hash function like SHA1.
-
- // CryptEncoderSHA1 encodes a password with SHA1
- func CryptEncoderSHA1(pass []byte, hash interface{}) []byte {
- h := sha1.Sum(pass)
- return h[:]
- }
-
- // CryptEncoderSSHA1 encodes a password with SHA1 with the
- // configured salt.
- func CryptEncoderSSHA1(salt string) func(pass []byte, hash interface{}) []byte {
- return func(pass []byte, hash interface{}) []byte {
- s := []byte(salt)
- p := append(pass, s...)
- h := sha1.Sum(p)
- return h[:]
- }
- }
-
- // CryptEncoderSHA256 encodes a password with SHA256
- func CryptEncoderSHA256(pass []byte, hash interface{}) []byte {
- h := sha256.Sum256(pass)
- return h[:]
- }
-
- // CryptEncoderSSHA256 encodes a password with SHA256
- // with the configured salt
- func CryptEncoderSSHA256(salt string) func(pass []byte, hash interface{}) []byte {
- return func(pass []byte, hash interface{}) []byte {
- s := []byte(salt)
- p := append(pass, s...)
- h := sha256.Sum256(p)
- return h[:]
- }
- }
-
- // CryptEncoderSHA384 encodes a password with SHA384
- func CryptEncoderSHA384(pass []byte, hash interface{}) []byte {
- h := sha512.Sum384(pass)
- return h[:]
- }
-
- // CryptEncoderSSHA384 encodes a password with SHA384
- // with the configured salt
- func CryptEncoderSSHA384(salt string) func(pass []byte, hash interface{}) []byte {
- return func(pass []byte, hash interface{}) []byte {
- s := []byte(salt)
- p := append(pass, s...)
- h := sha512.Sum384(p)
- return h[:]
- }
- }
-
- // CryptEncoderSHA512 encodes a password with SHA512
- func CryptEncoderSHA512(pass []byte, hash interface{}) []byte {
- h := sha512.Sum512(pass)
- return h[:]
- }
-
- // CryptEncoderSSHA512 encodes a password with SHA512
- // with the configured salt
- func CryptEncoderSSHA512(salt string) func(pass []byte, hash interface{}) []byte {
- return func(pass []byte, hash interface{}) []byte {
- s := []byte(salt)
- p := append(pass, s...)
- h := sha512.Sum512(p)
- return h[:]
- }
- }
-
- // EOF
|