|
- package utils
-
- type GFPoly struct {
- gf *GaloisField
- Coefficients []int
- }
-
- func (gp *GFPoly) Degree() int {
- return len(gp.Coefficients) - 1
- }
-
- func (gp *GFPoly) Zero() bool {
- return gp.Coefficients[0] == 0
- }
-
- // GetCoefficient returns the coefficient of x ^ degree
- func (gp *GFPoly) GetCoefficient(degree int) int {
- return gp.Coefficients[gp.Degree()-degree]
- }
-
- func (gp *GFPoly) AddOrSubstract(other *GFPoly) *GFPoly {
- if gp.Zero() {
- return other
- } else if other.Zero() {
- return gp
- }
- smallCoeff := gp.Coefficients
- largeCoeff := other.Coefficients
- if len(smallCoeff) > len(largeCoeff) {
- largeCoeff, smallCoeff = smallCoeff, largeCoeff
- }
- sumDiff := make([]int, len(largeCoeff))
- lenDiff := len(largeCoeff) - len(smallCoeff)
- copy(sumDiff, largeCoeff[:lenDiff])
- for i := lenDiff; i < len(largeCoeff); i++ {
- sumDiff[i] = int(gp.gf.AddOrSub(int(smallCoeff[i-lenDiff]), int(largeCoeff[i])))
- }
- return NewGFPoly(gp.gf, sumDiff)
- }
-
- func (gp *GFPoly) MultByMonominal(degree int, coeff int) *GFPoly {
- if coeff == 0 {
- return gp.gf.Zero()
- }
- size := len(gp.Coefficients)
- result := make([]int, size+degree)
- for i := 0; i < size; i++ {
- result[i] = int(gp.gf.Multiply(int(gp.Coefficients[i]), int(coeff)))
- }
- return NewGFPoly(gp.gf, result)
- }
-
- func (gp *GFPoly) Multiply(other *GFPoly) *GFPoly {
- if gp.Zero() || other.Zero() {
- return gp.gf.Zero()
- }
- aCoeff := gp.Coefficients
- aLen := len(aCoeff)
- bCoeff := other.Coefficients
- bLen := len(bCoeff)
- product := make([]int, aLen+bLen-1)
- for i := 0; i < aLen; i++ {
- ac := int(aCoeff[i])
- for j := 0; j < bLen; j++ {
- bc := int(bCoeff[j])
- product[i+j] = int(gp.gf.AddOrSub(int(product[i+j]), gp.gf.Multiply(ac, bc)))
- }
- }
- return NewGFPoly(gp.gf, product)
- }
-
- func (gp *GFPoly) Divide(other *GFPoly) (quotient *GFPoly, remainder *GFPoly) {
- quotient = gp.gf.Zero()
- remainder = gp
- fld := gp.gf
- denomLeadTerm := other.GetCoefficient(other.Degree())
- inversDenomLeadTerm := fld.Invers(int(denomLeadTerm))
- for remainder.Degree() >= other.Degree() && !remainder.Zero() {
- degreeDiff := remainder.Degree() - other.Degree()
- scale := int(fld.Multiply(int(remainder.GetCoefficient(remainder.Degree())), inversDenomLeadTerm))
- term := other.MultByMonominal(degreeDiff, scale)
- itQuot := NewMonominalPoly(fld, degreeDiff, scale)
- quotient = quotient.AddOrSubstract(itQuot)
- remainder = remainder.AddOrSubstract(term)
- }
- return
- }
-
- func NewMonominalPoly(field *GaloisField, degree int, coeff int) *GFPoly {
- if coeff == 0 {
- return field.Zero()
- }
- result := make([]int, degree+1)
- result[0] = coeff
- return NewGFPoly(field, result)
- }
-
- func NewGFPoly(field *GaloisField, coefficients []int) *GFPoly {
- for len(coefficients) > 1 && coefficients[0] == 0 {
- coefficients = coefficients[1:]
- }
- return &GFPoly{field, coefficients}
- }
|