本站源代码
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
techknowlogick 3f5cdfe359 use go 1.13 (#8088) 5 vuotta sitten
..
.gitignore Use Go1.11 module (#5743) 5 vuotta sitten
.travis.yml Use Go1.11 module (#5743) 5 vuotta sitten
LICENSE Search bar for issues/pulls (#530) 7 vuotta sitten
README.md Use Go1.11 module (#5743) 5 vuotta sitten
doc.go Search bar for issues/pulls (#530) 7 vuotta sitten
segment.go Search bar for issues/pulls (#530) 7 vuotta sitten
segment_fuzz.go Search bar for issues/pulls (#530) 7 vuotta sitten
segment_words.go Search bar for issues/pulls (#530) 7 vuotta sitten
segment_words.rl Use Go1.11 module (#5743) 5 vuotta sitten
segment_words_prod.go Search bar for issues/pulls (#530) 7 vuotta sitten

README.md

segment

A Go library for performing Unicode Text Segmentation as described in Unicode Standard Annex #29

Features

  • Currently only segmentation at Word Boundaries is supported.

License

Apache License Version 2.0

Usage

The functionality is exposed in two ways:

  1. You can use a bufio.Scanner with the SplitWords implementation of SplitFunc. The SplitWords function will identify the appropriate word boundaries in the input text and the Scanner will return tokens at the appropriate place.

    scanner := bufio.NewScanner(...)
    scanner.Split(segment.SplitWords)
    for scanner.Scan() {
        tokenBytes := scanner.Bytes()
    }
    if err := scanner.Err(); err != nil {
        t.Fatal(err)
    }
    
  2. Sometimes you would also like information returned about the type of token. To do this we have introduce a new type named Segmenter. It works just like Scanner but additionally a token type is returned.

    segmenter := segment.NewWordSegmenter(...)
    for segmenter.Segment() {
        tokenBytes := segmenter.Bytes())
        tokenType := segmenter.Type()
    }
    if err := segmenter.Err(); err != nil {
        t.Fatal(err)
    }
    

Choosing Implementation

By default segment does NOT use the fastest runtime implementation. The reason is that it adds approximately 5s to compilation time and may require more than 1GB of ram on the machine performing compilation.

However, you can choose to build with the fastest runtime implementation by passing the build tag as follows:

    -tags 'prod'

Generating Code

Several components in this package are generated.

  1. Several Ragel rules files are generated from Unicode properties files.
  2. Ragel machine is generated from the Ragel rules.
  3. Test tables are generated from the Unicode test files.

All of these can be generated by running:

    go generate

Fuzzing

There is support for fuzzing the segment library with go-fuzz.

  1. Install go-fuzz if you haven’t already:

    go get github.com/dvyukov/go-fuzz/go-fuzz
    go get github.com/dvyukov/go-fuzz/go-fuzz-build
    
  2. Build the package with go-fuzz:

    go-fuzz-build github.com/blevesearch/segment
    
  3. Convert the Unicode provided test cases into the initial corpus for go-fuzz:

    go test -v -run=TestGenerateWordSegmentFuzz -tags gofuzz_generate
    
  4. Run go-fuzz:

    go-fuzz -bin=segment-fuzz.zip -workdir=workdir
    

Status

Build Status

Coverage Status

GoDoc

上海开阖软件有限公司 沪ICP备12045867号-1