|
- <!DOCTYPE html>
-
- <html lang="en" data-content_root="../">
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
- <meta property="og:title" content="cmath — Mathematical functions for complex numbers" />
- <meta property="og:type" content="website" />
- <meta property="og:url" content="https://docs.python.org/3/library/cmath.html" />
- <meta property="og:site_name" content="Python documentation" />
- <meta property="og:description" content="This module provides access to mathematical functions for complex numbers. The functions in this module accept integers, floating-point numbers or complex numbers as arguments. They will also accep..." />
- <meta property="og:image" content="https://docs.python.org/3/_static/og-image.png" />
- <meta property="og:image:alt" content="Python documentation" />
- <meta name="description" content="This module provides access to mathematical functions for complex numbers. The functions in this module accept integers, floating-point numbers or complex numbers as arguments. They will also accep..." />
- <meta property="og:image:width" content="200" />
- <meta property="og:image:height" content="200" />
- <meta name="theme-color" content="#3776ab" />
-
- <title>cmath — Mathematical functions for complex numbers — Python 3.12.3 documentation</title><meta name="viewport" content="width=device-width, initial-scale=1.0">
-
- <link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=80d5e7a1" />
- <link rel="stylesheet" type="text/css" href="../_static/pydoctheme.css?v=bb723527" />
- <link id="pygments_dark_css" media="(prefers-color-scheme: dark)" rel="stylesheet" type="text/css" href="../_static/pygments_dark.css?v=b20cc3f5" />
-
- <script src="../_static/documentation_options.js?v=2c828074"></script>
- <script src="../_static/doctools.js?v=888ff710"></script>
- <script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
-
- <script src="../_static/sidebar.js"></script>
-
- <link rel="search" type="application/opensearchdescription+xml"
- title="Search within Python 3.12.3 documentation"
- href="../_static/opensearch.xml"/>
- <link rel="author" title="About these documents" href="../about.html" />
- <link rel="index" title="Index" href="../genindex.html" />
- <link rel="search" title="Search" href="../search.html" />
- <link rel="copyright" title="Copyright" href="../copyright.html" />
- <link rel="next" title="decimal — Decimal fixed point and floating point arithmetic" href="decimal.html" />
- <link rel="prev" title="math — Mathematical functions" href="math.html" />
- <link rel="canonical" href="https://docs.python.org/3/library/cmath.html" />
-
-
-
-
-
- <style>
- @media only screen {
- table.full-width-table {
- width: 100%;
- }
- }
- </style>
- <link rel="stylesheet" href="../_static/pydoctheme_dark.css" media="(prefers-color-scheme: dark)" id="pydoctheme_dark_css">
- <link rel="shortcut icon" type="image/png" href="../_static/py.svg" />
- <script type="text/javascript" src="../_static/copybutton.js"></script>
- <script type="text/javascript" src="../_static/menu.js"></script>
- <script type="text/javascript" src="../_static/search-focus.js"></script>
- <script type="text/javascript" src="../_static/themetoggle.js"></script>
-
- </head>
- <body>
- <div class="mobile-nav">
- <input type="checkbox" id="menuToggler" class="toggler__input" aria-controls="navigation"
- aria-pressed="false" aria-expanded="false" role="button" aria-label="Menu" />
- <nav class="nav-content" role="navigation">
- <label for="menuToggler" class="toggler__label">
- <span></span>
- </label>
- <span class="nav-items-wrapper">
- <a href="https://www.python.org/" class="nav-logo">
- <img src="../_static/py.svg" alt="Python logo"/>
- </a>
- <span class="version_switcher_placeholder"></span>
- <form role="search" class="search" action="../search.html" method="get">
- <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" viewBox="0 0 24 24" class="search-icon">
- <path fill-rule="nonzero" fill="currentColor" d="M15.5 14h-.79l-.28-.27a6.5 6.5 0 001.48-5.34c-.47-2.78-2.79-5-5.59-5.34a6.505 6.505 0 00-7.27 7.27c.34 2.8 2.56 5.12 5.34 5.59a6.5 6.5 0 005.34-1.48l.27.28v.79l4.25 4.25c.41.41 1.08.41 1.49 0 .41-.41.41-1.08 0-1.49L15.5 14zm-6 0C7.01 14 5 11.99 5 9.5S7.01 5 9.5 5 14 7.01 14 9.5 11.99 14 9.5 14z"></path>
- </svg>
- <input placeholder="Quick search" aria-label="Quick search" type="search" name="q" />
- <input type="submit" value="Go"/>
- </form>
- </span>
- </nav>
- <div class="menu-wrapper">
- <nav class="menu" role="navigation" aria-label="main navigation">
- <div class="language_switcher_placeholder"></div>
-
- <label class="theme-selector-label">
- Theme
- <select class="theme-selector" oninput="activateTheme(this.value)">
- <option value="auto" selected>Auto</option>
- <option value="light">Light</option>
- <option value="dark">Dark</option>
- </select>
- </label>
- <div>
- <h3><a href="../contents.html">Table of Contents</a></h3>
- <ul>
- <li><a class="reference internal" href="#"><code class="xref py py-mod docutils literal notranslate"><span class="pre">cmath</span></code> — Mathematical functions for complex numbers</a><ul>
- <li><a class="reference internal" href="#conversions-to-and-from-polar-coordinates">Conversions to and from polar coordinates</a></li>
- <li><a class="reference internal" href="#power-and-logarithmic-functions">Power and logarithmic functions</a></li>
- <li><a class="reference internal" href="#trigonometric-functions">Trigonometric functions</a></li>
- <li><a class="reference internal" href="#hyperbolic-functions">Hyperbolic functions</a></li>
- <li><a class="reference internal" href="#classification-functions">Classification functions</a></li>
- <li><a class="reference internal" href="#constants">Constants</a></li>
- </ul>
- </li>
- </ul>
-
- </div>
- <div>
- <h4>Previous topic</h4>
- <p class="topless"><a href="math.html"
- title="previous chapter"><code class="xref py py-mod docutils literal notranslate"><span class="pre">math</span></code> — Mathematical functions</a></p>
- </div>
- <div>
- <h4>Next topic</h4>
- <p class="topless"><a href="decimal.html"
- title="next chapter"><code class="xref py py-mod docutils literal notranslate"><span class="pre">decimal</span></code> — Decimal fixed point and floating point arithmetic</a></p>
- </div>
- <div role="note" aria-label="source link">
- <h3>This Page</h3>
- <ul class="this-page-menu">
- <li><a href="../bugs.html">Report a Bug</a></li>
- <li>
- <a href="https://github.com/python/cpython/blob/main/Doc/library/cmath.rst"
- rel="nofollow">Show Source
- </a>
- </li>
- </ul>
- </div>
- </nav>
- </div>
- </div>
-
-
- <div class="related" role="navigation" aria-label="related navigation">
- <h3>Navigation</h3>
- <ul>
- <li class="right" style="margin-right: 10px">
- <a href="../genindex.html" title="General Index"
- accesskey="I">index</a></li>
- <li class="right" >
- <a href="../py-modindex.html" title="Python Module Index"
- >modules</a> |</li>
- <li class="right" >
- <a href="decimal.html" title="decimal — Decimal fixed point and floating point arithmetic"
- accesskey="N">next</a> |</li>
- <li class="right" >
- <a href="math.html" title="math — Mathematical functions"
- accesskey="P">previous</a> |</li>
-
- <li><img src="../_static/py.svg" alt="Python logo" style="vertical-align: middle; margin-top: -1px"/></li>
- <li><a href="https://www.python.org/">Python</a> »</li>
- <li class="switchers">
- <div class="language_switcher_placeholder"></div>
- <div class="version_switcher_placeholder"></div>
- </li>
- <li>
-
- </li>
- <li id="cpython-language-and-version">
- <a href="../index.html">3.12.3 Documentation</a> »
- </li>
-
- <li class="nav-item nav-item-1"><a href="index.html" >The Python Standard Library</a> »</li>
- <li class="nav-item nav-item-2"><a href="numeric.html" accesskey="U">Numeric and Mathematical Modules</a> »</li>
- <li class="nav-item nav-item-this"><a href=""><code class="xref py py-mod docutils literal notranslate"><span class="pre">cmath</span></code> — Mathematical functions for complex numbers</a></li>
- <li class="right">
-
-
- <div class="inline-search" role="search">
- <form class="inline-search" action="../search.html" method="get">
- <input placeholder="Quick search" aria-label="Quick search" type="search" name="q" id="search-box" />
- <input type="submit" value="Go" />
- </form>
- </div>
- |
- </li>
- <li class="right">
- <label class="theme-selector-label">
- Theme
- <select class="theme-selector" oninput="activateTheme(this.value)">
- <option value="auto" selected>Auto</option>
- <option value="light">Light</option>
- <option value="dark">Dark</option>
- </select>
- </label> |</li>
-
- </ul>
- </div>
-
- <div class="document">
- <div class="documentwrapper">
- <div class="bodywrapper">
- <div class="body" role="main">
-
- <section id="module-cmath">
- <span id="cmath-mathematical-functions-for-complex-numbers"></span><h1><a class="reference internal" href="#module-cmath" title="cmath: Mathematical functions for complex numbers."><code class="xref py py-mod docutils literal notranslate"><span class="pre">cmath</span></code></a> — Mathematical functions for complex numbers<a class="headerlink" href="#module-cmath" title="Link to this heading">¶</a></h1>
- <hr class="docutils" />
- <p>This module provides access to mathematical functions for complex numbers. The
- functions in this module accept integers, floating-point numbers or complex
- numbers as arguments. They will also accept any Python object that has either a
- <a class="reference internal" href="../reference/datamodel.html#object.__complex__" title="object.__complex__"><code class="xref py py-meth docutils literal notranslate"><span class="pre">__complex__()</span></code></a> or a <a class="reference internal" href="../reference/datamodel.html#object.__float__" title="object.__float__"><code class="xref py py-meth docutils literal notranslate"><span class="pre">__float__()</span></code></a> method: these methods are used to
- convert the object to a complex or floating-point number, respectively, and
- the function is then applied to the result of the conversion.</p>
- <div class="admonition note">
- <p class="admonition-title">Note</p>
- <p>For functions involving branch cuts, we have the problem of deciding how to
- define those functions on the cut itself. Following Kahan’s “Branch cuts for
- complex elementary functions” paper, as well as Annex G of C99 and later C
- standards, we use the sign of zero to distinguish one side of the branch cut
- from the other: for a branch cut along (a portion of) the real axis we look
- at the sign of the imaginary part, while for a branch cut along the
- imaginary axis we look at the sign of the real part.</p>
- <p>For example, the <a class="reference internal" href="#cmath.sqrt" title="cmath.sqrt"><code class="xref py py-func docutils literal notranslate"><span class="pre">cmath.sqrt()</span></code></a> function has a branch cut along the
- negative real axis. An argument of <code class="docutils literal notranslate"><span class="pre">complex(-2.0,</span> <span class="pre">-0.0)</span></code> is treated as
- though it lies <em>below</em> the branch cut, and so gives a result on the negative
- imaginary axis:</p>
- <div class="highlight-python3 notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">cmath</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">complex</span><span class="p">(</span><span class="o">-</span><span class="mf">2.0</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.0</span><span class="p">))</span>
- <span class="go">-1.4142135623730951j</span>
- </pre></div>
- </div>
- <p>But an argument of <code class="docutils literal notranslate"><span class="pre">complex(-2.0,</span> <span class="pre">0.0)</span></code> is treated as though it lies above
- the branch cut:</p>
- <div class="highlight-python3 notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">cmath</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">complex</span><span class="p">(</span><span class="o">-</span><span class="mf">2.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">))</span>
- <span class="go">1.4142135623730951j</span>
- </pre></div>
- </div>
- </div>
- <section id="conversions-to-and-from-polar-coordinates">
- <h2>Conversions to and from polar coordinates<a class="headerlink" href="#conversions-to-and-from-polar-coordinates" title="Link to this heading">¶</a></h2>
- <p>A Python complex number <code class="docutils literal notranslate"><span class="pre">z</span></code> is stored internally using <em>rectangular</em>
- or <em>Cartesian</em> coordinates. It is completely determined by its <em>real
- part</em> <code class="docutils literal notranslate"><span class="pre">z.real</span></code> and its <em>imaginary part</em> <code class="docutils literal notranslate"><span class="pre">z.imag</span></code>. In other
- words:</p>
- <div class="highlight-python3 notranslate"><div class="highlight"><pre><span></span><span class="n">z</span> <span class="o">==</span> <span class="n">z</span><span class="o">.</span><span class="n">real</span> <span class="o">+</span> <span class="n">z</span><span class="o">.</span><span class="n">imag</span><span class="o">*</span><span class="mi">1</span><span class="n">j</span>
- </pre></div>
- </div>
- <p><em>Polar coordinates</em> give an alternative way to represent a complex
- number. In polar coordinates, a complex number <em>z</em> is defined by the
- modulus <em>r</em> and the phase angle <em>phi</em>. The modulus <em>r</em> is the distance
- from <em>z</em> to the origin, while the phase <em>phi</em> is the counterclockwise
- angle, measured in radians, from the positive x-axis to the line
- segment that joins the origin to <em>z</em>.</p>
- <p>The following functions can be used to convert from the native
- rectangular coordinates to polar coordinates and back.</p>
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.phase">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">phase</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.phase" title="Link to this definition">¶</a></dt>
- <dd><p>Return the phase of <em>x</em> (also known as the <em>argument</em> of <em>x</em>), as a float.
- <code class="docutils literal notranslate"><span class="pre">phase(x)</span></code> is equivalent to <code class="docutils literal notranslate"><span class="pre">math.atan2(x.imag,</span> <span class="pre">x.real)</span></code>. The result
- lies in the range [-<em>π</em>, <em>π</em>], and the branch cut for this operation lies
- along the negative real axis. The sign of the result is the same as the
- sign of <code class="docutils literal notranslate"><span class="pre">x.imag</span></code>, even when <code class="docutils literal notranslate"><span class="pre">x.imag</span></code> is zero:</p>
- <div class="highlight-python3 notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">phase</span><span class="p">(</span><span class="nb">complex</span><span class="p">(</span><span class="o">-</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">))</span>
- <span class="go">3.141592653589793</span>
- <span class="gp">>>> </span><span class="n">phase</span><span class="p">(</span><span class="nb">complex</span><span class="p">(</span><span class="o">-</span><span class="mf">1.0</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.0</span><span class="p">))</span>
- <span class="go">-3.141592653589793</span>
- </pre></div>
- </div>
- </dd></dl>
-
- <div class="admonition note">
- <p class="admonition-title">Note</p>
- <p>The modulus (absolute value) of a complex number <em>x</em> can be
- computed using the built-in <a class="reference internal" href="functions.html#abs" title="abs"><code class="xref py py-func docutils literal notranslate"><span class="pre">abs()</span></code></a> function. There is no
- separate <a class="reference internal" href="#module-cmath" title="cmath: Mathematical functions for complex numbers."><code class="xref py py-mod docutils literal notranslate"><span class="pre">cmath</span></code></a> module function for this operation.</p>
- </div>
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.polar">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">polar</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.polar" title="Link to this definition">¶</a></dt>
- <dd><p>Return the representation of <em>x</em> in polar coordinates. Returns a
- pair <code class="docutils literal notranslate"><span class="pre">(r,</span> <span class="pre">phi)</span></code> where <em>r</em> is the modulus of <em>x</em> and phi is the
- phase of <em>x</em>. <code class="docutils literal notranslate"><span class="pre">polar(x)</span></code> is equivalent to <code class="docutils literal notranslate"><span class="pre">(abs(x),</span>
- <span class="pre">phase(x))</span></code>.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.rect">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">rect</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">r</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">phi</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.rect" title="Link to this definition">¶</a></dt>
- <dd><p>Return the complex number <em>x</em> with polar coordinates <em>r</em> and <em>phi</em>.
- Equivalent to <code class="docutils literal notranslate"><span class="pre">r</span> <span class="pre">*</span> <span class="pre">(math.cos(phi)</span> <span class="pre">+</span> <span class="pre">math.sin(phi)*1j)</span></code>.</p>
- </dd></dl>
-
- </section>
- <section id="power-and-logarithmic-functions">
- <h2>Power and logarithmic functions<a class="headerlink" href="#power-and-logarithmic-functions" title="Link to this heading">¶</a></h2>
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.exp">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">exp</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.exp" title="Link to this definition">¶</a></dt>
- <dd><p>Return <em>e</em> raised to the power <em>x</em>, where <em>e</em> is the base of natural
- logarithms.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.log">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">log</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="optional">[</span>, <em class="sig-param"><span class="n"><span class="pre">base</span></span></em><span class="optional">]</span><span class="sig-paren">)</span><a class="headerlink" href="#cmath.log" title="Link to this definition">¶</a></dt>
- <dd><p>Returns the logarithm of <em>x</em> to the given <em>base</em>. If the <em>base</em> is not
- specified, returns the natural logarithm of <em>x</em>. There is one branch cut,
- from 0 along the negative real axis to -∞.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.log10">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">log10</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.log10" title="Link to this definition">¶</a></dt>
- <dd><p>Return the base-10 logarithm of <em>x</em>. This has the same branch cut as
- <a class="reference internal" href="#cmath.log" title="cmath.log"><code class="xref py py-func docutils literal notranslate"><span class="pre">log()</span></code></a>.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.sqrt">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">sqrt</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.sqrt" title="Link to this definition">¶</a></dt>
- <dd><p>Return the square root of <em>x</em>. This has the same branch cut as <a class="reference internal" href="#cmath.log" title="cmath.log"><code class="xref py py-func docutils literal notranslate"><span class="pre">log()</span></code></a>.</p>
- </dd></dl>
-
- </section>
- <section id="trigonometric-functions">
- <h2>Trigonometric functions<a class="headerlink" href="#trigonometric-functions" title="Link to this heading">¶</a></h2>
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.acos">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">acos</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.acos" title="Link to this definition">¶</a></dt>
- <dd><p>Return the arc cosine of <em>x</em>. There are two branch cuts: One extends right
- from 1 along the real axis to ∞. The other extends left from -1 along the
- real axis to -∞.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.asin">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">asin</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.asin" title="Link to this definition">¶</a></dt>
- <dd><p>Return the arc sine of <em>x</em>. This has the same branch cuts as <a class="reference internal" href="#cmath.acos" title="cmath.acos"><code class="xref py py-func docutils literal notranslate"><span class="pre">acos()</span></code></a>.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.atan">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">atan</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.atan" title="Link to this definition">¶</a></dt>
- <dd><p>Return the arc tangent of <em>x</em>. There are two branch cuts: One extends from
- <code class="docutils literal notranslate"><span class="pre">1j</span></code> along the imaginary axis to <code class="docutils literal notranslate"><span class="pre">∞j</span></code>. The other extends from <code class="docutils literal notranslate"><span class="pre">-1j</span></code>
- along the imaginary axis to <code class="docutils literal notranslate"><span class="pre">-∞j</span></code>.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.cos">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">cos</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.cos" title="Link to this definition">¶</a></dt>
- <dd><p>Return the cosine of <em>x</em>.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.sin">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">sin</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.sin" title="Link to this definition">¶</a></dt>
- <dd><p>Return the sine of <em>x</em>.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.tan">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">tan</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.tan" title="Link to this definition">¶</a></dt>
- <dd><p>Return the tangent of <em>x</em>.</p>
- </dd></dl>
-
- </section>
- <section id="hyperbolic-functions">
- <h2>Hyperbolic functions<a class="headerlink" href="#hyperbolic-functions" title="Link to this heading">¶</a></h2>
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.acosh">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">acosh</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.acosh" title="Link to this definition">¶</a></dt>
- <dd><p>Return the inverse hyperbolic cosine of <em>x</em>. There is one branch cut,
- extending left from 1 along the real axis to -∞.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.asinh">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">asinh</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.asinh" title="Link to this definition">¶</a></dt>
- <dd><p>Return the inverse hyperbolic sine of <em>x</em>. There are two branch cuts:
- One extends from <code class="docutils literal notranslate"><span class="pre">1j</span></code> along the imaginary axis to <code class="docutils literal notranslate"><span class="pre">∞j</span></code>. The other
- extends from <code class="docutils literal notranslate"><span class="pre">-1j</span></code> along the imaginary axis to <code class="docutils literal notranslate"><span class="pre">-∞j</span></code>.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.atanh">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">atanh</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.atanh" title="Link to this definition">¶</a></dt>
- <dd><p>Return the inverse hyperbolic tangent of <em>x</em>. There are two branch cuts: One
- extends from <code class="docutils literal notranslate"><span class="pre">1</span></code> along the real axis to <code class="docutils literal notranslate"><span class="pre">∞</span></code>. The other extends from
- <code class="docutils literal notranslate"><span class="pre">-1</span></code> along the real axis to <code class="docutils literal notranslate"><span class="pre">-∞</span></code>.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.cosh">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">cosh</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.cosh" title="Link to this definition">¶</a></dt>
- <dd><p>Return the hyperbolic cosine of <em>x</em>.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.sinh">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">sinh</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.sinh" title="Link to this definition">¶</a></dt>
- <dd><p>Return the hyperbolic sine of <em>x</em>.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.tanh">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">tanh</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.tanh" title="Link to this definition">¶</a></dt>
- <dd><p>Return the hyperbolic tangent of <em>x</em>.</p>
- </dd></dl>
-
- </section>
- <section id="classification-functions">
- <h2>Classification functions<a class="headerlink" href="#classification-functions" title="Link to this heading">¶</a></h2>
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.isfinite">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">isfinite</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.isfinite" title="Link to this definition">¶</a></dt>
- <dd><p>Return <code class="docutils literal notranslate"><span class="pre">True</span></code> if both the real and imaginary parts of <em>x</em> are finite, and
- <code class="docutils literal notranslate"><span class="pre">False</span></code> otherwise.</p>
- <div class="versionadded">
- <p><span class="versionmodified added">New in version 3.2.</span></p>
- </div>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.isinf">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">isinf</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.isinf" title="Link to this definition">¶</a></dt>
- <dd><p>Return <code class="docutils literal notranslate"><span class="pre">True</span></code> if either the real or the imaginary part of <em>x</em> is an
- infinity, and <code class="docutils literal notranslate"><span class="pre">False</span></code> otherwise.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.isnan">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">isnan</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.isnan" title="Link to this definition">¶</a></dt>
- <dd><p>Return <code class="docutils literal notranslate"><span class="pre">True</span></code> if either the real or the imaginary part of <em>x</em> is a NaN,
- and <code class="docutils literal notranslate"><span class="pre">False</span></code> otherwise.</p>
- </dd></dl>
-
- <dl class="py function">
- <dt class="sig sig-object py" id="cmath.isclose">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">isclose</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">a</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">b</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">rel_tol</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1e-09</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">abs_tol</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.0</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#cmath.isclose" title="Link to this definition">¶</a></dt>
- <dd><p>Return <code class="docutils literal notranslate"><span class="pre">True</span></code> if the values <em>a</em> and <em>b</em> are close to each other and
- <code class="docutils literal notranslate"><span class="pre">False</span></code> otherwise.</p>
- <p>Whether or not two values are considered close is determined according to
- given absolute and relative tolerances.</p>
- <p><em>rel_tol</em> is the relative tolerance – it is the maximum allowed difference
- between <em>a</em> and <em>b</em>, relative to the larger absolute value of <em>a</em> or <em>b</em>.
- For example, to set a tolerance of 5%, pass <code class="docutils literal notranslate"><span class="pre">rel_tol=0.05</span></code>. The default
- tolerance is <code class="docutils literal notranslate"><span class="pre">1e-09</span></code>, which assures that the two values are the same
- within about 9 decimal digits. <em>rel_tol</em> must be greater than zero.</p>
- <p><em>abs_tol</em> is the minimum absolute tolerance – useful for comparisons near
- zero. <em>abs_tol</em> must be at least zero.</p>
- <p>If no errors occur, the result will be:
- <code class="docutils literal notranslate"><span class="pre">abs(a-b)</span> <span class="pre"><=</span> <span class="pre">max(rel_tol</span> <span class="pre">*</span> <span class="pre">max(abs(a),</span> <span class="pre">abs(b)),</span> <span class="pre">abs_tol)</span></code>.</p>
- <p>The IEEE 754 special values of <code class="docutils literal notranslate"><span class="pre">NaN</span></code>, <code class="docutils literal notranslate"><span class="pre">inf</span></code>, and <code class="docutils literal notranslate"><span class="pre">-inf</span></code> will be
- handled according to IEEE rules. Specifically, <code class="docutils literal notranslate"><span class="pre">NaN</span></code> is not considered
- close to any other value, including <code class="docutils literal notranslate"><span class="pre">NaN</span></code>. <code class="docutils literal notranslate"><span class="pre">inf</span></code> and <code class="docutils literal notranslate"><span class="pre">-inf</span></code> are only
- considered close to themselves.</p>
- <div class="versionadded">
- <p><span class="versionmodified added">New in version 3.5.</span></p>
- </div>
- <div class="admonition seealso">
- <p class="admonition-title">See also</p>
- <p><span class="target" id="index-0"></span><a class="pep reference external" href="https://peps.python.org/pep-0485/"><strong>PEP 485</strong></a> – A function for testing approximate equality</p>
- </div>
- </dd></dl>
-
- </section>
- <section id="constants">
- <h2>Constants<a class="headerlink" href="#constants" title="Link to this heading">¶</a></h2>
- <dl class="py data">
- <dt class="sig sig-object py" id="cmath.pi">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">pi</span></span><a class="headerlink" href="#cmath.pi" title="Link to this definition">¶</a></dt>
- <dd><p>The mathematical constant <em>π</em>, as a float.</p>
- </dd></dl>
-
- <dl class="py data">
- <dt class="sig sig-object py" id="cmath.e">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">e</span></span><a class="headerlink" href="#cmath.e" title="Link to this definition">¶</a></dt>
- <dd><p>The mathematical constant <em>e</em>, as a float.</p>
- </dd></dl>
-
- <dl class="py data">
- <dt class="sig sig-object py" id="cmath.tau">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">tau</span></span><a class="headerlink" href="#cmath.tau" title="Link to this definition">¶</a></dt>
- <dd><p>The mathematical constant <em>τ</em>, as a float.</p>
- <div class="versionadded">
- <p><span class="versionmodified added">New in version 3.6.</span></p>
- </div>
- </dd></dl>
-
- <dl class="py data">
- <dt class="sig sig-object py" id="cmath.inf">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">inf</span></span><a class="headerlink" href="#cmath.inf" title="Link to this definition">¶</a></dt>
- <dd><p>Floating-point positive infinity. Equivalent to <code class="docutils literal notranslate"><span class="pre">float('inf')</span></code>.</p>
- <div class="versionadded">
- <p><span class="versionmodified added">New in version 3.6.</span></p>
- </div>
- </dd></dl>
-
- <dl class="py data">
- <dt class="sig sig-object py" id="cmath.infj">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">infj</span></span><a class="headerlink" href="#cmath.infj" title="Link to this definition">¶</a></dt>
- <dd><p>Complex number with zero real part and positive infinity imaginary
- part. Equivalent to <code class="docutils literal notranslate"><span class="pre">complex(0.0,</span> <span class="pre">float('inf'))</span></code>.</p>
- <div class="versionadded">
- <p><span class="versionmodified added">New in version 3.6.</span></p>
- </div>
- </dd></dl>
-
- <dl class="py data">
- <dt class="sig sig-object py" id="cmath.nan">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">nan</span></span><a class="headerlink" href="#cmath.nan" title="Link to this definition">¶</a></dt>
- <dd><p>A floating-point “not a number” (NaN) value. Equivalent to
- <code class="docutils literal notranslate"><span class="pre">float('nan')</span></code>.</p>
- <div class="versionadded">
- <p><span class="versionmodified added">New in version 3.6.</span></p>
- </div>
- </dd></dl>
-
- <dl class="py data">
- <dt class="sig sig-object py" id="cmath.nanj">
- <span class="sig-prename descclassname"><span class="pre">cmath.</span></span><span class="sig-name descname"><span class="pre">nanj</span></span><a class="headerlink" href="#cmath.nanj" title="Link to this definition">¶</a></dt>
- <dd><p>Complex number with zero real part and NaN imaginary part. Equivalent to
- <code class="docutils literal notranslate"><span class="pre">complex(0.0,</span> <span class="pre">float('nan'))</span></code>.</p>
- <div class="versionadded">
- <p><span class="versionmodified added">New in version 3.6.</span></p>
- </div>
- </dd></dl>
-
- <p id="index-1">Note that the selection of functions is similar, but not identical, to that in
- module <a class="reference internal" href="math.html#module-math" title="math: Mathematical functions (sin() etc.)."><code class="xref py py-mod docutils literal notranslate"><span class="pre">math</span></code></a>. The reason for having two modules is that some users aren’t
- interested in complex numbers, and perhaps don’t even know what they are. They
- would rather have <code class="docutils literal notranslate"><span class="pre">math.sqrt(-1)</span></code> raise an exception than return a complex
- number. Also note that the functions defined in <a class="reference internal" href="#module-cmath" title="cmath: Mathematical functions for complex numbers."><code class="xref py py-mod docutils literal notranslate"><span class="pre">cmath</span></code></a> always return a
- complex number, even if the answer can be expressed as a real number (in which
- case the complex number has an imaginary part of zero).</p>
- <p>A note on branch cuts: They are curves along which the given function fails to
- be continuous. They are a necessary feature of many complex functions. It is
- assumed that if you need to compute with complex functions, you will understand
- about branch cuts. Consult almost any (not too elementary) book on complex
- variables for enlightenment. For information of the proper choice of branch
- cuts for numerical purposes, a good reference should be the following:</p>
- <div class="admonition seealso">
- <p class="admonition-title">See also</p>
- <p>Kahan, W: Branch cuts for complex elementary functions; or, Much ado about
- nothing’s sign bit. In Iserles, A., and Powell, M. (eds.), The state of the art
- in numerical analysis. Clarendon Press (1987) pp165–211.</p>
- </div>
- </section>
- </section>
-
-
- <div class="clearer"></div>
- </div>
- </div>
- </div>
- <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
- <div class="sphinxsidebarwrapper">
- <div>
- <h3><a href="../contents.html">Table of Contents</a></h3>
- <ul>
- <li><a class="reference internal" href="#"><code class="xref py py-mod docutils literal notranslate"><span class="pre">cmath</span></code> — Mathematical functions for complex numbers</a><ul>
- <li><a class="reference internal" href="#conversions-to-and-from-polar-coordinates">Conversions to and from polar coordinates</a></li>
- <li><a class="reference internal" href="#power-and-logarithmic-functions">Power and logarithmic functions</a></li>
- <li><a class="reference internal" href="#trigonometric-functions">Trigonometric functions</a></li>
- <li><a class="reference internal" href="#hyperbolic-functions">Hyperbolic functions</a></li>
- <li><a class="reference internal" href="#classification-functions">Classification functions</a></li>
- <li><a class="reference internal" href="#constants">Constants</a></li>
- </ul>
- </li>
- </ul>
-
- </div>
- <div>
- <h4>Previous topic</h4>
- <p class="topless"><a href="math.html"
- title="previous chapter"><code class="xref py py-mod docutils literal notranslate"><span class="pre">math</span></code> — Mathematical functions</a></p>
- </div>
- <div>
- <h4>Next topic</h4>
- <p class="topless"><a href="decimal.html"
- title="next chapter"><code class="xref py py-mod docutils literal notranslate"><span class="pre">decimal</span></code> — Decimal fixed point and floating point arithmetic</a></p>
- </div>
- <div role="note" aria-label="source link">
- <h3>This Page</h3>
- <ul class="this-page-menu">
- <li><a href="../bugs.html">Report a Bug</a></li>
- <li>
- <a href="https://github.com/python/cpython/blob/main/Doc/library/cmath.rst"
- rel="nofollow">Show Source
- </a>
- </li>
- </ul>
- </div>
- </div>
- <div id="sidebarbutton" title="Collapse sidebar">
- <span>«</span>
- </div>
-
- </div>
- <div class="clearer"></div>
- </div>
- <div class="related" role="navigation" aria-label="related navigation">
- <h3>Navigation</h3>
- <ul>
- <li class="right" style="margin-right: 10px">
- <a href="../genindex.html" title="General Index"
- >index</a></li>
- <li class="right" >
- <a href="../py-modindex.html" title="Python Module Index"
- >modules</a> |</li>
- <li class="right" >
- <a href="decimal.html" title="decimal — Decimal fixed point and floating point arithmetic"
- >next</a> |</li>
- <li class="right" >
- <a href="math.html" title="math — Mathematical functions"
- >previous</a> |</li>
-
- <li><img src="../_static/py.svg" alt="Python logo" style="vertical-align: middle; margin-top: -1px"/></li>
- <li><a href="https://www.python.org/">Python</a> »</li>
- <li class="switchers">
- <div class="language_switcher_placeholder"></div>
- <div class="version_switcher_placeholder"></div>
- </li>
- <li>
-
- </li>
- <li id="cpython-language-and-version">
- <a href="../index.html">3.12.3 Documentation</a> »
- </li>
-
- <li class="nav-item nav-item-1"><a href="index.html" >The Python Standard Library</a> »</li>
- <li class="nav-item nav-item-2"><a href="numeric.html" >Numeric and Mathematical Modules</a> »</li>
- <li class="nav-item nav-item-this"><a href=""><code class="xref py py-mod docutils literal notranslate"><span class="pre">cmath</span></code> — Mathematical functions for complex numbers</a></li>
- <li class="right">
-
-
- <div class="inline-search" role="search">
- <form class="inline-search" action="../search.html" method="get">
- <input placeholder="Quick search" aria-label="Quick search" type="search" name="q" id="search-box" />
- <input type="submit" value="Go" />
- </form>
- </div>
- |
- </li>
- <li class="right">
- <label class="theme-selector-label">
- Theme
- <select class="theme-selector" oninput="activateTheme(this.value)">
- <option value="auto" selected>Auto</option>
- <option value="light">Light</option>
- <option value="dark">Dark</option>
- </select>
- </label> |</li>
-
- </ul>
- </div>
- <div class="footer">
- ©
- <a href="../copyright.html">
-
- Copyright
-
- </a>
- 2001-2024, Python Software Foundation.
- <br />
- This page is licensed under the Python Software Foundation License Version 2.
- <br />
- Examples, recipes, and other code in the documentation are additionally licensed under the Zero Clause BSD License.
- <br />
-
- See <a href="/license.html">History and License</a> for more information.<br />
-
-
- <br />
-
- The Python Software Foundation is a non-profit corporation.
- <a href="https://www.python.org/psf/donations/">Please donate.</a>
- <br />
- <br />
- Last updated on Apr 09, 2024 (13:47 UTC).
-
- <a href="/bugs.html">Found a bug</a>?
-
- <br />
-
- Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 7.2.6.
- </div>
-
- </body>
- </html>
|