gooderp18绿色标准版
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

505 行
36KB

  1. <?xml version="1.0" encoding="UTF-8" standalone="no"?>
  2. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>CREATE INDEX</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets V1.79.1" /><link rel="prev" href="sql-creategroup.html" title="CREATE GROUP" /><link rel="next" href="sql-createlanguage.html" title="CREATE LANGUAGE" /></head><body><div xmlns="http://www.w3.org/TR/xhtml1/transitional" class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">CREATE INDEX</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="sql-creategroup.html" title="CREATE GROUP">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="sql-commands.html" title="SQL Commands">Up</a></td><th width="60%" align="center">SQL Commands</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 12.4 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="sql-createlanguage.html" title="CREATE LANGUAGE">Next</a></td></tr></table><hr></hr></div><div class="refentry" id="SQL-CREATEINDEX"><div class="titlepage"></div><a id="id-1.9.3.69.1" class="indexterm"></a><div class="refnamediv"><h2><span class="refentrytitle">CREATE INDEX</span></h2><p>CREATE INDEX — define a new index</p></div><div class="refsynopsisdiv"><h2>Synopsis</h2><pre class="synopsis">
  3. CREATE [ UNIQUE ] INDEX [ CONCURRENTLY ] [ [ IF NOT EXISTS ] <em class="replaceable"><code>name</code></em> ] ON [ ONLY ] <em class="replaceable"><code>table_name</code></em> [ USING <em class="replaceable"><code>method</code></em> ]
  4. ( { <em class="replaceable"><code>column_name</code></em> | ( <em class="replaceable"><code>expression</code></em> ) } [ COLLATE <em class="replaceable"><code>collation</code></em> ] [ <em class="replaceable"><code>opclass</code></em> ] [ ASC | DESC ] [ NULLS { FIRST | LAST } ] [, ...] )
  5. [ INCLUDE ( <em class="replaceable"><code>column_name</code></em> [, ...] ) ]
  6. [ WITH ( <em class="replaceable"><code>storage_parameter</code></em> [= <em class="replaceable"><code>value</code></em>] [, ... ] ) ]
  7. [ TABLESPACE <em class="replaceable"><code>tablespace_name</code></em> ]
  8. [ WHERE <em class="replaceable"><code>predicate</code></em> ]
  9. </pre></div><div class="refsect1" id="id-1.9.3.69.5"><h2>Description</h2><p>
  10. <code class="command">CREATE INDEX</code> constructs an index on the specified column(s)
  11. of the specified relation, which can be a table or a materialized view.
  12. Indexes are primarily used to enhance database performance (though
  13. inappropriate use can result in slower performance).
  14. </p><p>
  15. The key field(s) for the index are specified as column names,
  16. or alternatively as expressions written in parentheses.
  17. Multiple fields can be specified if the index method supports
  18. multicolumn indexes.
  19. </p><p>
  20. An index field can be an expression computed from the values of
  21. one or more columns of the table row. This feature can be used
  22. to obtain fast access to data based on some transformation of
  23. the basic data. For example, an index computed on
  24. <code class="literal">upper(col)</code> would allow the clause
  25. <code class="literal">WHERE upper(col) = 'JIM'</code> to use an index.
  26. </p><p>
  27. <span class="productname">PostgreSQL</span> provides the index methods
  28. B-tree, hash, GiST, SP-GiST, GIN, and BRIN. Users can also define their own
  29. index methods, but that is fairly complicated.
  30. </p><p>
  31. When the <code class="literal">WHERE</code> clause is present, a
  32. <em class="firstterm">partial index</em> is created.
  33. A partial index is an index that contains entries for only a portion of
  34. a table, usually a portion that is more useful for indexing than the
  35. rest of the table. For example, if you have a table that contains both
  36. billed and unbilled orders where the unbilled orders take up a small
  37. fraction of the total table and yet that is an often used section, you
  38. can improve performance by creating an index on just that portion.
  39. Another possible application is to use <code class="literal">WHERE</code> with
  40. <code class="literal">UNIQUE</code> to enforce uniqueness over a subset of a
  41. table. See <a class="xref" href="indexes-partial.html" title="11.8. Partial Indexes">Section 11.8</a> for more discussion.
  42. </p><p>
  43. The expression used in the <code class="literal">WHERE</code> clause can refer
  44. only to columns of the underlying table, but it can use all columns,
  45. not just the ones being indexed. Presently, subqueries and
  46. aggregate expressions are also forbidden in <code class="literal">WHERE</code>.
  47. The same restrictions apply to index fields that are expressions.
  48. </p><p>
  49. All functions and operators used in an index definition must be
  50. <span class="quote">“<span class="quote">immutable</span>”</span>, that is, their results must depend only on
  51. their arguments and never on any outside influence (such as
  52. the contents of another table or the current time). This restriction
  53. ensures that the behavior of the index is well-defined. To use a
  54. user-defined function in an index expression or <code class="literal">WHERE</code>
  55. clause, remember to mark the function immutable when you create it.
  56. </p></div><div class="refsect1" id="id-1.9.3.69.6"><h2>Parameters</h2><div class="variablelist"><dl class="variablelist"><dt><span class="term"><code class="literal">UNIQUE</code></span></dt><dd><p>
  57. Causes the system to check for
  58. duplicate values in the table when the index is created (if data
  59. already exist) and each time data is added. Attempts to
  60. insert or update data which would result in duplicate entries
  61. will generate an error.
  62. </p><p>
  63. Additional restrictions apply when unique indexes are applied to
  64. partitioned tables; see <a class="xref" href="sql-createtable.html" title="CREATE TABLE"><span class="refentrytitle">CREATE TABLE</span></a>.
  65. </p></dd><dt><span class="term"><code class="literal">CONCURRENTLY</code></span></dt><dd><p>
  66. When this option is used, <span class="productname">PostgreSQL</span> will build the
  67. index without taking any locks that prevent concurrent inserts,
  68. updates, or deletes on the table; whereas a standard index build
  69. locks out writes (but not reads) on the table until it's done.
  70. There are several caveats to be aware of when using this option
  71. — see <a class="xref" href="sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY" title="Building Indexes Concurrently">Building Indexes Concurrently</a>.
  72. </p><p>
  73. For temporary tables, <code class="command">CREATE INDEX</code> is always
  74. non-concurrent, as no other session can access them, and
  75. non-concurrent index creation is cheaper.
  76. </p></dd><dt><span class="term"><code class="literal">IF NOT EXISTS</code></span></dt><dd><p>
  77. Do not throw an error if a relation with the same name already exists.
  78. A notice is issued in this case. Note that there is no guarantee that
  79. the existing index is anything like the one that would have been created.
  80. Index name is required when <code class="literal">IF NOT EXISTS</code> is specified.
  81. </p></dd><dt><span class="term"><code class="literal">INCLUDE</code></span></dt><dd><p>
  82. The optional <code class="literal">INCLUDE</code> clause specifies a
  83. list of columns which will be included in the index
  84. as <em class="firstterm">non-key</em> columns. A non-key column cannot
  85. be used in an index scan search qualification, and it is disregarded
  86. for purposes of any uniqueness or exclusion constraint enforced by
  87. the index. However, an index-only scan can return the contents of
  88. non-key columns without having to visit the index's table, since
  89. they are available directly from the index entry. Thus, addition of
  90. non-key columns allows index-only scans to be used for queries that
  91. otherwise could not use them.
  92. </p><p>
  93. It's wise to be conservative about adding non-key columns to an
  94. index, especially wide columns. If an index tuple exceeds the
  95. maximum size allowed for the index type, data insertion will fail.
  96. In any case, non-key columns duplicate data from the index's table
  97. and bloat the size of the index, thus potentially slowing searches.
  98. </p><p>
  99. Columns listed in the <code class="literal">INCLUDE</code> clause don't need
  100. appropriate operator classes; the clause can include
  101. columns whose data types don't have operator classes defined for
  102. a given access method.
  103. </p><p>
  104. Expressions are not supported as included columns since they cannot be
  105. used in index-only scans.
  106. </p><p>
  107. Currently, the B-tree and the GiST index access methods support this
  108. feature. In B-tree and the GiST indexes, the values of columns listed
  109. in the <code class="literal">INCLUDE</code> clause are included in leaf tuples
  110. which correspond to heap tuples, but are not included in upper-level
  111. index entries used for tree navigation.
  112. </p></dd><dt><span class="term"><em class="replaceable"><code>name</code></em></span></dt><dd><p>
  113. The name of the index to be created. No schema name can be included
  114. here; the index is always created in the same schema as its parent
  115. table. If the name is omitted, <span class="productname">PostgreSQL</span> chooses a
  116. suitable name based on the parent table's name and the indexed column
  117. name(s).
  118. </p></dd><dt><span class="term"><code class="literal">ONLY</code></span></dt><dd><p>
  119. Indicates not to recurse creating indexes on partitions, if the
  120. table is partitioned. The default is to recurse.
  121. </p></dd><dt><span class="term"><em class="replaceable"><code>table_name</code></em></span></dt><dd><p>
  122. The name (possibly schema-qualified) of the table to be indexed.
  123. </p></dd><dt><span class="term"><em class="replaceable"><code>method</code></em></span></dt><dd><p>
  124. The name of the index method to be used. Choices are
  125. <code class="literal">btree</code>, <code class="literal">hash</code>,
  126. <code class="literal">gist</code>, <code class="literal">spgist</code>, <code class="literal">gin</code>, and
  127. <code class="literal">brin</code>.
  128. The default method is <code class="literal">btree</code>.
  129. </p></dd><dt><span class="term"><em class="replaceable"><code>column_name</code></em></span></dt><dd><p>
  130. The name of a column of the table.
  131. </p></dd><dt><span class="term"><em class="replaceable"><code>expression</code></em></span></dt><dd><p>
  132. An expression based on one or more columns of the table. The
  133. expression usually must be written with surrounding parentheses,
  134. as shown in the syntax. However, the parentheses can be omitted
  135. if the expression has the form of a function call.
  136. </p></dd><dt><span class="term"><em class="replaceable"><code>collation</code></em></span></dt><dd><p>
  137. The name of the collation to use for the index. By default,
  138. the index uses the collation declared for the column to be
  139. indexed or the result collation of the expression to be
  140. indexed. Indexes with non-default collations can be useful for
  141. queries that involve expressions using non-default collations.
  142. </p></dd><dt><span class="term"><em class="replaceable"><code>opclass</code></em></span></dt><dd><p>
  143. The name of an operator class. See below for details.
  144. </p></dd><dt><span class="term"><code class="literal">ASC</code></span></dt><dd><p>
  145. Specifies ascending sort order (which is the default).
  146. </p></dd><dt><span class="term"><code class="literal">DESC</code></span></dt><dd><p>
  147. Specifies descending sort order.
  148. </p></dd><dt><span class="term"><code class="literal">NULLS FIRST</code></span></dt><dd><p>
  149. Specifies that nulls sort before non-nulls. This is the default
  150. when <code class="literal">DESC</code> is specified.
  151. </p></dd><dt><span class="term"><code class="literal">NULLS LAST</code></span></dt><dd><p>
  152. Specifies that nulls sort after non-nulls. This is the default
  153. when <code class="literal">DESC</code> is not specified.
  154. </p></dd><dt><span class="term"><em class="replaceable"><code>storage_parameter</code></em></span></dt><dd><p>
  155. The name of an index-method-specific storage parameter. See
  156. <a class="xref" href="sql-createindex.html#SQL-CREATEINDEX-STORAGE-PARAMETERS" title="Index Storage Parameters">Index Storage Parameters</a>
  157. for details.
  158. </p></dd><dt><span class="term"><em class="replaceable"><code>tablespace_name</code></em></span></dt><dd><p>
  159. The tablespace in which to create the index. If not specified,
  160. <a class="xref" href="runtime-config-client.html#GUC-DEFAULT-TABLESPACE">default_tablespace</a> is consulted, or
  161. <a class="xref" href="runtime-config-client.html#GUC-TEMP-TABLESPACES">temp_tablespaces</a> for indexes on temporary
  162. tables.
  163. </p></dd><dt><span class="term"><em class="replaceable"><code>predicate</code></em></span></dt><dd><p>
  164. The constraint expression for a partial index.
  165. </p></dd></dl></div><div class="refsect2" id="SQL-CREATEINDEX-STORAGE-PARAMETERS"><h3>Index Storage Parameters</h3><p>
  166. The optional <code class="literal">WITH</code> clause specifies <em class="firstterm">storage
  167. parameters</em> for the index. Each index method has its own set of allowed
  168. storage parameters. The B-tree, hash, GiST and SP-GiST index methods all
  169. accept this parameter:
  170. </p><div class="variablelist"><dl class="variablelist"><dt id="INDEX-RELOPTION-FILLFACTOR"><span class="term"><code class="literal">fillfactor</code>
  171. <a id="id-1.9.3.69.6.3.3.1.1.2" class="indexterm"></a>
  172. </span></dt><dd><p>
  173. The fillfactor for an index is a percentage that determines how full
  174. the index method will try to pack index pages. For B-trees, leaf pages
  175. are filled to this percentage during initial index build, and also
  176. when extending the index at the right (adding new largest key values).
  177. If pages
  178. subsequently become completely full, they will be split, leading to
  179. gradual degradation in the index's efficiency. B-trees use a default
  180. fillfactor of 90, but any integer value from 10 to 100 can be selected.
  181. If the table is static then fillfactor 100 is best to minimize the
  182. index's physical size, but for heavily updated tables a smaller
  183. fillfactor is better to minimize the need for page splits. The
  184. other index methods use fillfactor in different but roughly analogous
  185. ways; the default fillfactor varies between methods.
  186. </p></dd></dl></div><p>
  187. B-tree indexes additionally accept this parameter:
  188. </p><div class="variablelist"><dl class="variablelist"><dt id="INDEX-RELOPTION-VACUUM-CLEANUP-INDEX-SCALE-FACTOR"><span class="term"><code class="literal">vacuum_cleanup_index_scale_factor</code>
  189. <a id="id-1.9.3.69.6.3.5.1.1.2" class="indexterm"></a>
  190. </span></dt><dd><p>
  191. Per-index value for <a class="xref" href="runtime-config-client.html#GUC-VACUUM-CLEANUP-INDEX-SCALE-FACTOR">vacuum_cleanup_index_scale_factor</a>.
  192. </p></dd></dl></div><p>
  193. GiST indexes additionally accept this parameter:
  194. </p><div class="variablelist"><dl class="variablelist"><dt id="INDEX-RELOPTION-BUFFERING"><span class="term"><code class="literal">buffering</code>
  195. <a id="id-1.9.3.69.6.3.7.1.1.2" class="indexterm"></a>
  196. </span></dt><dd><p>
  197. Determines whether the buffering build technique described in
  198. <a class="xref" href="gist-implementation.html#GIST-BUFFERING-BUILD" title="64.4.1. GiST Buffering Build">Section 64.4.1</a> is used to build the index. With
  199. <code class="literal">OFF</code> it is disabled, with <code class="literal">ON</code> it is enabled, and
  200. with <code class="literal">AUTO</code> it is initially disabled, but turned on
  201. on-the-fly once the index size reaches <a class="xref" href="runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE">effective_cache_size</a>. The default is <code class="literal">AUTO</code>.
  202. </p></dd></dl></div><p>
  203. GIN indexes accept different parameters:
  204. </p><div class="variablelist"><dl class="variablelist"><dt id="INDEX-RELOPTION-FASTUPDATE"><span class="term"><code class="literal">fastupdate</code>
  205. <a id="id-1.9.3.69.6.3.9.1.1.2" class="indexterm"></a>
  206. </span></dt><dd><p>
  207. This setting controls usage of the fast update technique described in
  208. <a class="xref" href="gin-implementation.html#GIN-FAST-UPDATE" title="66.4.1. GIN Fast Update Technique">Section 66.4.1</a>. It is a Boolean parameter:
  209. <code class="literal">ON</code> enables fast update, <code class="literal">OFF</code> disables it.
  210. (Alternative spellings of <code class="literal">ON</code> and <code class="literal">OFF</code> are
  211. allowed as described in <a class="xref" href="config-setting.html" title="19.1. Setting Parameters">Section 19.1</a>.) The
  212. default is <code class="literal">ON</code>.
  213. </p><div class="note"><h3 class="title">Note</h3><p>
  214. Turning <code class="literal">fastupdate</code> off via <code class="command">ALTER INDEX</code> prevents
  215. future insertions from going into the list of pending index entries,
  216. but does not in itself flush previous entries. You might want to
  217. <code class="command">VACUUM</code> the table or call <code class="function">gin_clean_pending_list</code>
  218. function afterward to ensure the pending list is emptied.
  219. </p></div></dd></dl></div><div class="variablelist"><dl class="variablelist"><dt id="INDEX-RELOPTION-GIN-PENDING-LIST-LIMIT"><span class="term"><code class="literal">gin_pending_list_limit</code>
  220. <a id="id-1.9.3.69.6.3.10.1.1.2" class="indexterm"></a>
  221. </span></dt><dd><p>
  222. Custom <a class="xref" href="runtime-config-client.html#GUC-GIN-PENDING-LIST-LIMIT">gin_pending_list_limit</a> parameter.
  223. This value is specified in kilobytes.
  224. </p></dd></dl></div><p>
  225. <acronym class="acronym">BRIN</acronym> indexes accept different parameters:
  226. </p><div class="variablelist"><dl class="variablelist"><dt id="INDEX-RELOPTION-PAGES-PER-RANGE"><span class="term"><code class="literal">pages_per_range</code>
  227. <a id="id-1.9.3.69.6.3.12.1.1.2" class="indexterm"></a>
  228. </span></dt><dd><p>
  229. Defines the number of table blocks that make up one block range for
  230. each entry of a <acronym class="acronym">BRIN</acronym> index (see <a class="xref" href="brin-intro.html" title="67.1. Introduction">Section 67.1</a>
  231. for more details). The default is <code class="literal">128</code>.
  232. </p></dd><dt id="INDEX-RELOPTION-AUTOSUMMARIZE"><span class="term"><code class="literal">autosummarize</code>
  233. <a id="id-1.9.3.69.6.3.12.2.1.2" class="indexterm"></a>
  234. </span></dt><dd><p>
  235. Defines whether a summarization run is invoked for the previous page
  236. range whenever an insertion is detected on the next one.
  237. </p></dd></dl></div></div><div class="refsect2" id="SQL-CREATEINDEX-CONCURRENTLY"><h3>Building Indexes Concurrently</h3><a id="id-1.9.3.69.6.4.2" class="indexterm"></a><p>
  238. Creating an index can interfere with regular operation of a database.
  239. Normally <span class="productname">PostgreSQL</span> locks the table to be indexed against
  240. writes and performs the entire index build with a single scan of the
  241. table. Other transactions can still read the table, but if they try to
  242. insert, update, or delete rows in the table they will block until the
  243. index build is finished. This could have a severe effect if the system is
  244. a live production database. Very large tables can take many hours to be
  245. indexed, and even for smaller tables, an index build can lock out writers
  246. for periods that are unacceptably long for a production system.
  247. </p><p>
  248. <span class="productname">PostgreSQL</span> supports building indexes without locking
  249. out writes. This method is invoked by specifying the
  250. <code class="literal">CONCURRENTLY</code> option of <code class="command">CREATE INDEX</code>.
  251. When this option is used,
  252. <span class="productname">PostgreSQL</span> must perform two scans of the table, and in
  253. addition it must wait for all existing transactions that could potentially
  254. modify or use the index to terminate. Thus
  255. this method requires more total work than a standard index build and takes
  256. significantly longer to complete. However, since it allows normal
  257. operations to continue while the index is built, this method is useful for
  258. adding new indexes in a production environment. Of course, the extra CPU
  259. and I/O load imposed by the index creation might slow other operations.
  260. </p><p>
  261. In a concurrent index build, the index is actually entered into
  262. the system catalogs in one transaction, then two table scans occur in
  263. two more transactions. Before each table scan, the index build must
  264. wait for existing transactions that have modified the table to terminate.
  265. After the second scan, the index build must wait for any transactions
  266. that have a snapshot (see <a class="xref" href="mvcc.html" title="Chapter 13. Concurrency Control">Chapter 13</a>) predating the second
  267. scan to terminate. Then finally the index can be marked ready for use,
  268. and the <code class="command">CREATE INDEX</code> command terminates.
  269. Even then, however, the index may not be immediately usable for queries:
  270. in the worst case, it cannot be used as long as transactions exist that
  271. predate the start of the index build.
  272. </p><p>
  273. If a problem arises while scanning the table, such as a deadlock or a
  274. uniqueness violation in a unique index, the <code class="command">CREATE INDEX</code>
  275. command will fail but leave behind an <span class="quote">“<span class="quote">invalid</span>”</span> index. This index
  276. will be ignored for querying purposes because it might be incomplete;
  277. however it will still consume update overhead. The <span class="application">psql</span>
  278. <code class="command">\d</code> command will report such an index as <code class="literal">INVALID</code>:
  279. </p><pre class="programlisting">
  280. postgres=# \d tab
  281. Table "public.tab"
  282. Column | Type | Collation | Nullable | Default
  283. --------+---------+-----------+----------+---------
  284. col | integer | | |
  285. Indexes:
  286. "idx" btree (col) INVALID
  287. </pre><p>
  288. The recommended recovery
  289. method in such cases is to drop the index and try again to perform
  290. <code class="command">CREATE INDEX CONCURRENTLY</code>. (Another possibility is
  291. to rebuild the index with <code class="command">REINDEX INDEX CONCURRENTLY</code>).
  292. </p><p>
  293. Another caveat when building a unique index concurrently is that the
  294. uniqueness constraint is already being enforced against other transactions
  295. when the second table scan begins. This means that constraint violations
  296. could be reported in other queries prior to the index becoming available
  297. for use, or even in cases where the index build eventually fails. Also,
  298. if a failure does occur in the second scan, the <span class="quote">“<span class="quote">invalid</span>”</span> index
  299. continues to enforce its uniqueness constraint afterwards.
  300. </p><p>
  301. Concurrent builds of expression indexes and partial indexes are supported.
  302. Errors occurring in the evaluation of these expressions could cause
  303. behavior similar to that described above for unique constraint violations.
  304. </p><p>
  305. Regular index builds permit other regular index builds on the
  306. same table to occur simultaneously, but only one concurrent index build
  307. can occur on a table at a time. In either case, schema modification of the
  308. table is not allowed while the index is being built. Another difference is
  309. that a regular <code class="command">CREATE INDEX</code> command can be performed
  310. within a transaction block, but <code class="command">CREATE INDEX CONCURRENTLY</code>
  311. cannot.
  312. </p><p>
  313. Concurrent builds for indexes on partitioned tables are currently not
  314. supported. However, you may concurrently build the index on each
  315. partition individually and then finally create the partitioned index
  316. non-concurrently in order to reduce the time where writes to the
  317. partitioned table will be locked out. In this case, building the
  318. partitioned index is a metadata only operation.
  319. </p></div></div><div class="refsect1" id="id-1.9.3.69.7"><h2>Notes</h2><p>
  320. See <a class="xref" href="indexes.html" title="Chapter 11. Indexes">Chapter 11</a> for information about when indexes can
  321. be used, when they are not used, and in which particular situations
  322. they can be useful.
  323. </p><p>
  324. Currently, only the B-tree, GiST, GIN, and BRIN index methods support
  325. multicolumn indexes. Up to 32 fields can be specified by default.
  326. (This limit can be altered when building
  327. <span class="productname">PostgreSQL</span>.) Only B-tree currently
  328. supports unique indexes.
  329. </p><p>
  330. An <em class="firstterm">operator class</em> can be specified for each
  331. column of an index. The operator class identifies the operators to be
  332. used by the index for that column. For example, a B-tree index on
  333. four-byte integers would use the <code class="literal">int4_ops</code> class;
  334. this operator class includes comparison functions for four-byte
  335. integers. In practice the default operator class for the column's data
  336. type is usually sufficient. The main point of having operator classes
  337. is that for some data types, there could be more than one meaningful
  338. ordering. For example, we might want to sort a complex-number data
  339. type either by absolute value or by real part. We could do this by
  340. defining two operator classes for the data type and then selecting
  341. the proper class when creating an index. More information about
  342. operator classes is in <a class="xref" href="indexes-opclass.html" title="11.10. Operator Classes and Operator Families">Section 11.10</a> and in <a class="xref" href="xindex.html" title="37.16. Interfacing Extensions to Indexes">Section 37.16</a>.
  343. </p><p>
  344. When <code class="literal">CREATE INDEX</code> is invoked on a partitioned
  345. table, the default behavior is to recurse to all partitions to ensure
  346. they all have matching indexes.
  347. Each partition is first checked to determine whether an equivalent
  348. index already exists, and if so, that index will become attached as a
  349. partition index to the index being created, which will become its
  350. parent index.
  351. If no matching index exists, a new index will be created and
  352. automatically attached; the name of the new index in each partition
  353. will be determined as if no index name had been specified in the
  354. command.
  355. If the <code class="literal">ONLY</code> option is specified, no recursion
  356. is done, and the index is marked invalid.
  357. (<code class="command">ALTER INDEX ... ATTACH PARTITION</code> marks the index
  358. valid, once all partitions acquire matching indexes.) Note, however,
  359. that any partition that is created in the future using
  360. <code class="command">CREATE TABLE ... PARTITION OF</code> will automatically
  361. have a matching index, regardless of whether <code class="literal">ONLY</code> is
  362. specified.
  363. </p><p>
  364. For index methods that support ordered scans (currently, only B-tree),
  365. the optional clauses <code class="literal">ASC</code>, <code class="literal">DESC</code>, <code class="literal">NULLS
  366. FIRST</code>, and/or <code class="literal">NULLS LAST</code> can be specified to modify
  367. the sort ordering of the index. Since an ordered index can be
  368. scanned either forward or backward, it is not normally useful to create a
  369. single-column <code class="literal">DESC</code> index — that sort ordering is already
  370. available with a regular index. The value of these options is that
  371. multicolumn indexes can be created that match the sort ordering requested
  372. by a mixed-ordering query, such as <code class="literal">SELECT ... ORDER BY x ASC, y
  373. DESC</code>. The <code class="literal">NULLS</code> options are useful if you need to support
  374. <span class="quote">“<span class="quote">nulls sort low</span>”</span> behavior, rather than the default <span class="quote">“<span class="quote">nulls
  375. sort high</span>”</span>, in queries that depend on indexes to avoid sorting steps.
  376. </p><p>
  377. For most index methods, the speed of creating an index is
  378. dependent on the setting of <a class="xref" href="runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM">maintenance_work_mem</a>.
  379. Larger values will reduce the time needed for index creation, so long
  380. as you don't make it larger than the amount of memory really available,
  381. which would drive the machine into swapping.
  382. </p><p>
  383. <span class="productname">PostgreSQL</span> can build indexes while
  384. leveraging multiple CPUs in order to process the table rows faster.
  385. This feature is known as <em class="firstterm">parallel index
  386. build</em>. For index methods that support building indexes
  387. in parallel (currently, only B-tree),
  388. <code class="varname">maintenance_work_mem</code> specifies the maximum
  389. amount of memory that can be used by each index build operation as
  390. a whole, regardless of how many worker processes were started.
  391. Generally, a cost model automatically determines how many worker
  392. processes should be requested, if any.
  393. </p><p>
  394. Parallel index builds may benefit from increasing
  395. <code class="varname">maintenance_work_mem</code> where an equivalent serial
  396. index build will see little or no benefit. Note that
  397. <code class="varname">maintenance_work_mem</code> may influence the number of
  398. worker processes requested, since parallel workers must have at
  399. least a <code class="literal">32MB</code> share of the total
  400. <code class="varname">maintenance_work_mem</code> budget. There must also be
  401. a remaining <code class="literal">32MB</code> share for the leader process.
  402. Increasing <a class="xref" href="runtime-config-resource.html#GUC-MAX-PARALLEL-WORKERS-MAINTENANCE">max_parallel_maintenance_workers</a>
  403. may allow more workers to be used, which will reduce the time
  404. needed for index creation, so long as the index build is not
  405. already I/O bound. Of course, there should also be sufficient
  406. CPU capacity that would otherwise lie idle.
  407. </p><p>
  408. Setting a value for <code class="literal">parallel_workers</code> via <a class="xref" href="sql-altertable.html" title="ALTER TABLE"><span class="refentrytitle">ALTER TABLE</span></a> directly controls how many parallel
  409. worker processes will be requested by a <code class="command">CREATE
  410. INDEX</code> against the table. This bypasses the cost model
  411. completely, and prevents <code class="varname">maintenance_work_mem</code>
  412. from affecting how many parallel workers are requested. Setting
  413. <code class="literal">parallel_workers</code> to 0 via <code class="command">ALTER
  414. TABLE</code> will disable parallel index builds on the table in
  415. all cases.
  416. </p><div class="tip"><h3 class="title">Tip</h3><p>
  417. You might want to reset <code class="literal">parallel_workers</code> after
  418. setting it as part of tuning an index build. This avoids
  419. inadvertent changes to query plans, since
  420. <code class="literal">parallel_workers</code> affects
  421. <span class="emphasis"><em>all</em></span> parallel table scans.
  422. </p></div><p>
  423. While <code class="command">CREATE INDEX</code> with the
  424. <code class="literal">CONCURRENTLY</code> option supports parallel builds
  425. without special restrictions, only the first table scan is actually
  426. performed in parallel.
  427. </p><p>
  428. Use <a class="xref" href="sql-dropindex.html" title="DROP INDEX"><span class="refentrytitle">DROP INDEX</span></a>
  429. to remove an index.
  430. </p><p>
  431. Prior releases of <span class="productname">PostgreSQL</span> also had an
  432. R-tree index method. This method has been removed because
  433. it had no significant advantages over the GiST method.
  434. If <code class="literal">USING rtree</code> is specified, <code class="command">CREATE INDEX</code>
  435. will interpret it as <code class="literal">USING gist</code>, to simplify conversion
  436. of old databases to GiST.
  437. </p></div><div class="refsect1" id="id-1.9.3.69.8"><h2>Examples</h2><p>
  438. To create a unique B-tree index on the column <code class="literal">title</code> in
  439. the table <code class="literal">films</code>:
  440. </p><pre class="programlisting">
  441. CREATE UNIQUE INDEX title_idx ON films (title);
  442. </pre><p>
  443. </p><p>
  444. To create a unique B-tree index on the column <code class="literal">title</code>
  445. with included columns <code class="literal">director</code>
  446. and <code class="literal">rating</code> in the table <code class="literal">films</code>:
  447. </p><pre class="programlisting">
  448. CREATE UNIQUE INDEX title_idx ON films (title) INCLUDE (director, rating);
  449. </pre><p>
  450. </p><p>
  451. To create an index on the expression <code class="literal">lower(title)</code>,
  452. allowing efficient case-insensitive searches:
  453. </p><pre class="programlisting">
  454. CREATE INDEX ON films ((lower(title)));
  455. </pre><p>
  456. (In this example we have chosen to omit the index name, so the system
  457. will choose a name, typically <code class="literal">films_lower_idx</code>.)
  458. </p><p>
  459. To create an index with non-default collation:
  460. </p><pre class="programlisting">
  461. CREATE INDEX title_idx_german ON films (title COLLATE "de_DE");
  462. </pre><p>
  463. </p><p>
  464. To create an index with non-default sort ordering of nulls:
  465. </p><pre class="programlisting">
  466. CREATE INDEX title_idx_nulls_low ON films (title NULLS FIRST);
  467. </pre><p>
  468. </p><p>
  469. To create an index with non-default fill factor:
  470. </p><pre class="programlisting">
  471. CREATE UNIQUE INDEX title_idx ON films (title) WITH (fillfactor = 70);
  472. </pre><p>
  473. </p><p>
  474. To create a <acronym class="acronym">GIN</acronym> index with fast updates disabled:
  475. </p><pre class="programlisting">
  476. CREATE INDEX gin_idx ON documents_table USING GIN (locations) WITH (fastupdate = off);
  477. </pre><p>
  478. </p><p>
  479. To create an index on the column <code class="literal">code</code> in the table
  480. <code class="literal">films</code> and have the index reside in the tablespace
  481. <code class="literal">indexspace</code>:
  482. </p><pre class="programlisting">
  483. CREATE INDEX code_idx ON films (code) TABLESPACE indexspace;
  484. </pre><p>
  485. </p><p>
  486. To create a GiST index on a point attribute so that we
  487. can efficiently use box operators on the result of the
  488. conversion function:
  489. </p><pre class="programlisting">
  490. CREATE INDEX pointloc
  491. ON points USING gist (box(location,location));
  492. SELECT * FROM points
  493. WHERE box(location,location) &amp;&amp; '(0,0),(1,1)'::box;
  494. </pre><p>
  495. </p><p>
  496. To create an index without locking out writes to the table:
  497. </p><pre class="programlisting">
  498. CREATE INDEX CONCURRENTLY sales_quantity_index ON sales_table (quantity);
  499. </pre></div><div class="refsect1" id="id-1.9.3.69.9"><h2>Compatibility</h2><p>
  500. <code class="command">CREATE INDEX</code> is a
  501. <span class="productname">PostgreSQL</span> language extension. There
  502. are no provisions for indexes in the SQL standard.
  503. </p></div><div class="refsect1" id="id-1.9.3.69.10"><h2>See Also</h2><span class="simplelist"><a class="xref" href="sql-alterindex.html" title="ALTER INDEX"><span class="refentrytitle">ALTER INDEX</span></a>, <a class="xref" href="sql-dropindex.html" title="DROP INDEX"><span class="refentrytitle">DROP INDEX</span></a>, <a class="xref" href="sql-reindex.html" title="REINDEX"><span class="refentrytitle">REINDEX</span></a></span></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="sql-creategroup.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="sql-commands.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="sql-createlanguage.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">CREATE GROUP </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> CREATE LANGUAGE</td></tr></table></div></body></html>
上海开阖软件有限公司 沪ICP备12045867号-1