|
- <?xml version="1.0" encoding="UTF-8" standalone="no"?>
- <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>70.2. Multivariate Statistics Examples</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets V1.79.1" /><link rel="prev" href="row-estimation-examples.html" title="70.1. Row Estimation Examples" /><link rel="next" href="planner-stats-security.html" title="70.3. Planner Statistics and Security" /></head><body><div xmlns="http://www.w3.org/TR/xhtml1/transitional" class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">70.2. Multivariate Statistics Examples</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="row-estimation-examples.html" title="70.1. Row Estimation Examples">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="planner-stats-details.html" title="Chapter 70. How the Planner Uses Statistics">Up</a></td><th width="60%" align="center">Chapter 70. How the Planner Uses Statistics</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 12.4 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="planner-stats-security.html" title="70.3. Planner Statistics and Security">Next</a></td></tr></table><hr></hr></div><div class="sect1" id="MULTIVARIATE-STATISTICS-EXAMPLES"><div class="titlepage"><div><div><h2 class="title" style="clear: both">70.2. Multivariate Statistics Examples</h2></div></div></div><div class="toc"><dl class="toc"><dt><span class="sect2"><a href="multivariate-statistics-examples.html#FUNCTIONAL-DEPENDENCIES">70.2.1. Functional Dependencies</a></span></dt><dt><span class="sect2"><a href="multivariate-statistics-examples.html#MULTIVARIATE-NDISTINCT-COUNTS">70.2.2. Multivariate N-Distinct Counts</a></span></dt><dt><span class="sect2"><a href="multivariate-statistics-examples.html#MCV-LISTS">70.2.3. MCV Lists</a></span></dt></dl></div><a id="id-1.10.23.5.2" class="indexterm"></a><div class="sect2" id="FUNCTIONAL-DEPENDENCIES"><div class="titlepage"><div><div><h3 class="title">70.2.1. Functional Dependencies</h3></div></div></div><p>
- Multivariate correlation can be demonstrated with a very simple data set
- — a table with two columns, both containing the same values:
-
- </p><pre class="programlisting">
- CREATE TABLE t (a INT, b INT);
- INSERT INTO t SELECT i % 100, i % 100 FROM generate_series(1, 10000) s(i);
- ANALYZE t;
- </pre><p>
-
- As explained in <a class="xref" href="planner-stats.html" title="14.2. Statistics Used by the Planner">Section 14.2</a>, the planner can determine
- cardinality of <code class="structname">t</code> using the number of pages and
- rows obtained from <code class="structname">pg_class</code>:
-
- </p><pre class="programlisting">
- SELECT relpages, reltuples FROM pg_class WHERE relname = 't';
-
- relpages | reltuples
- ----------+-----------
- 45 | 10000
- </pre><p>
-
- The data distribution is very simple; there are only 100 distinct values
- in each column, uniformly distributed.
- </p><p>
- The following example shows the result of estimating a <code class="literal">WHERE</code>
- condition on the <code class="structfield">a</code> column:
-
- </p><pre class="programlisting">
- EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1;
- QUERY PLAN
- -------------------------------------------------------------------------------
- Seq Scan on t (cost=0.00..170.00 rows=100 width=8) (actual rows=100 loops=1)
- Filter: (a = 1)
- Rows Removed by Filter: 9900
- </pre><p>
-
- The planner examines the condition and determines the selectivity
- of this clause to be 1%. By comparing this estimate and the actual
- number of rows, we see that the estimate is very accurate
- (in fact exact, as the table is very small). Changing the
- <code class="literal">WHERE</code> condition to use the <code class="structfield">b</code> column, an
- identical plan is generated. But observe what happens if we apply the same
- condition on both columns, combining them with <code class="literal">AND</code>:
-
- </p><pre class="programlisting">
- EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
- QUERY PLAN
- -----------------------------------------------------------------------------
- Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=100 loops=1)
- Filter: ((a = 1) AND (b = 1))
- Rows Removed by Filter: 9900
- </pre><p>
-
- The planner estimates the selectivity for each condition individually,
- arriving at the same 1% estimates as above. Then it assumes that the
- conditions are independent, and so it multiplies their selectivities,
- producing a final selectivity estimate of just 0.01%.
- This is a significant underestimate, as the actual number of rows
- matching the conditions (100) is two orders of magnitude higher.
- </p><p>
- This problem can be fixed by creating a statistics object that
- directs <code class="command">ANALYZE</code> to calculate functional-dependency
- multivariate statistics on the two columns:
-
- </p><pre class="programlisting">
- CREATE STATISTICS stts (dependencies) ON a, b FROM t;
- ANALYZE t;
- EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
- QUERY PLAN
- -------------------------------------------------------------------------------
- Seq Scan on t (cost=0.00..195.00 rows=100 width=8) (actual rows=100 loops=1)
- Filter: ((a = 1) AND (b = 1))
- Rows Removed by Filter: 9900
- </pre><p>
- </p></div><div class="sect2" id="MULTIVARIATE-NDISTINCT-COUNTS"><div class="titlepage"><div><div><h3 class="title">70.2.2. Multivariate N-Distinct Counts</h3></div></div></div><p>
- A similar problem occurs with estimation of the cardinality of sets of
- multiple columns, such as the number of groups that would be generated by
- a <code class="command">GROUP BY</code> clause. When <code class="command">GROUP BY</code>
- lists a single column, the n-distinct estimate (which is visible as the
- estimated number of rows returned by the HashAggregate node) is very
- accurate:
- </p><pre class="programlisting">
- EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a;
- QUERY PLAN
- -----------------------------------------------------------------------------------------
- HashAggregate (cost=195.00..196.00 rows=100 width=12) (actual rows=100 loops=1)
- Group Key: a
- -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=4) (actual rows=10000 loops=1)
- </pre><p>
- But without multivariate statistics, the estimate for the number of
- groups in a query with two columns in <code class="command">GROUP BY</code>, as
- in the following example, is off by an order of magnitude:
- </p><pre class="programlisting">
- EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a, b;
- QUERY PLAN
- --------------------------------------------------------------------------------------------
- HashAggregate (cost=220.00..230.00 rows=1000 width=16) (actual rows=100 loops=1)
- Group Key: a, b
- -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=8) (actual rows=10000 loops=1)
- </pre><p>
- By redefining the statistics object to include n-distinct counts for the
- two columns, the estimate is much improved:
- </p><pre class="programlisting">
- DROP STATISTICS stts;
- CREATE STATISTICS stts (dependencies, ndistinct) ON a, b FROM t;
- ANALYZE t;
- EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a, b;
- QUERY PLAN
- --------------------------------------------------------------------------------------------
- HashAggregate (cost=220.00..221.00 rows=100 width=16) (actual rows=100 loops=1)
- Group Key: a, b
- -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=8) (actual rows=10000 loops=1)
- </pre><p>
- </p></div><div class="sect2" id="MCV-LISTS"><div class="titlepage"><div><div><h3 class="title">70.2.3. MCV Lists</h3></div></div></div><p>
- As explained in <a class="xref" href="multivariate-statistics-examples.html#FUNCTIONAL-DEPENDENCIES" title="70.2.1. Functional Dependencies">Section 70.2.1</a>, functional
- dependencies are very cheap and efficient type of statistics, but their
- main limitation is their global nature (only tracking dependencies at
- the column level, not between individual column values).
- </p><p>
- This section introduces multivariate variant of <acronym class="acronym">MCV</acronym>
- (most-common values) lists, a straightforward extension of the per-column
- statistics described in <a class="xref" href="row-estimation-examples.html" title="70.1. Row Estimation Examples">Section 70.1</a>. These
- statistics address the limitation by storing individual values, but it is
- naturally more expensive, both in terms of building the statistics in
- <code class="command">ANALYZE</code>, storage and planning time.
- </p><p>
- Let's look at the query from <a class="xref" href="multivariate-statistics-examples.html#FUNCTIONAL-DEPENDENCIES" title="70.2.1. Functional Dependencies">Section 70.2.1</a>
- again, but this time with a <acronym class="acronym">MCV</acronym> list created on the
- same set of columns (be sure to drop the functional dependencies, to
- make sure the planner uses the newly created statistics).
-
- </p><pre class="programlisting">
- DROP STATISTICS stts;
- CREATE STATISTICS stts2 (mcv) ON a, b FROM t;
- ANALYZE t;
- EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
- QUERY PLAN
- -------------------------------------------------------------------------------
- Seq Scan on t (cost=0.00..195.00 rows=100 width=8) (actual rows=100 loops=1)
- Filter: ((a = 1) AND (b = 1))
- Rows Removed by Filter: 9900
- </pre><p>
-
- The estimate is as accurate as with the functional dependencies, mostly
- thanks to the table being fairly small and having a simple distribution
- with a low number of distinct values. Before looking at the second query,
- which was not handled by functional dependencies particularly well,
- let's inspect the <acronym class="acronym">MCV</acronym> list a bit.
- </p><p>
- Inspecting the <acronym class="acronym">MCV</acronym> list is possible using
- <code class="function">pg_mcv_list_items</code> set-returning function.
-
- </p><pre class="programlisting">
- SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid),
- pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts2';
- index | values | nulls | frequency | base_frequency
- -------+----------+-------+-----------+----------------
- 0 | {0, 0} | {f,f} | 0.01 | 0.0001
- 1 | {1, 1} | {f,f} | 0.01 | 0.0001
- ...
- 49 | {49, 49} | {f,f} | 0.01 | 0.0001
- 50 | {50, 50} | {f,f} | 0.01 | 0.0001
- ...
- 97 | {97, 97} | {f,f} | 0.01 | 0.0001
- 98 | {98, 98} | {f,f} | 0.01 | 0.0001
- 99 | {99, 99} | {f,f} | 0.01 | 0.0001
- (100 rows)
- </pre><p>
-
- This confirms there are 100 distinct combinations in the two columns, and
- all of them are about equally likely (1% frequency for each one). The
- base frequency is the frequency computed from per-column statistics, as if
- there were no multi-column statistics. Had there been any null values in
- either of the columns, this would be identified in the
- <code class="structfield">nulls</code> column.
- </p><p>
- When estimating the selectivity, the planner applies all the conditions
- on items in the <acronym class="acronym">MCV</acronym> list, and then sums the frequencies
- of the matching ones. See <code class="function">mcv_clauselist_selectivity</code>
- in <code class="filename">src/backend/statistics/mcv.c</code> for details.
- </p><p>
- Compared to functional dependencies, <acronym class="acronym">MCV</acronym> lists have two
- major advantages. Firstly, the list stores actual values, making it possible
- to decide which combinations are compatible.
-
- </p><pre class="programlisting">
- EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 10;
- QUERY PLAN
- ---------------------------------------------------------------------------
- Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=0 loops=1)
- Filter: ((a = 1) AND (b = 10))
- Rows Removed by Filter: 10000
- </pre><p>
-
- Secondly, <acronym class="acronym">MCV</acronym> lists handle a wider range of clause types,
- not just equality clauses like functional dependencies. For example,
- consider the following range query for the same table:
-
- </p><pre class="programlisting">
- EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a <= 49 AND b > 49;
- QUERY PLAN
- ---------------------------------------------------------------------------
- Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=0 loops=1)
- Filter: ((a <= 49) AND (b > 49))
- Rows Removed by Filter: 10000
- </pre><p>
-
- </p></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="row-estimation-examples.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="planner-stats-details.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="planner-stats-security.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">70.1. Row Estimation Examples </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> 70.3. Planner Statistics and Security</td></tr></table></div></body></html>
|