|
- # Part of Odoo. See LICENSE file for full copyright and licensing details.
-
- import builtins
- import math
-
- __all__ = [
- "float_compare",
- "float_is_zero",
- "float_repr",
- "float_round",
- "float_split",
- "float_split_str",
- ]
-
-
- def round(f):
- # P3's builtin round differs from P2 in the following manner:
- # * it rounds half to even rather than up (away from 0)
- # * round(-0.) loses the sign (it returns -0 rather than 0)
- # * round(x) returns an int rather than a float
- #
- # this compatibility shim implements Python 2's round in terms of
- # Python 3's so that important rounding error under P3 can be
- # trivially fixed, assuming the P2 behaviour to be debugged and
- # correct.
- roundf = builtins.round(f)
- if builtins.round(f + 1) - roundf != 1:
- return f + math.copysign(0.5, f)
- # copysign ensures round(-0.) -> -0 *and* result is a float
- return math.copysign(roundf, f)
-
-
- def _float_check_precision(precision_digits=None, precision_rounding=None):
- if precision_rounding is not None and precision_digits is None:
- assert precision_rounding > 0,\
- f"precision_rounding must be positive, got {precision_rounding}"
- elif precision_digits is not None and precision_rounding is None:
- # TODO: `int`s will also get the `is_integer` method starting from python 3.12
- assert float(precision_digits).is_integer() and precision_digits >= 0,\
- f"precision_digits must be a non-negative integer, got {precision_digits}"
- precision_rounding = 10 ** -precision_digits
- else:
- msg = "exactly one of precision_digits and precision_rounding must be specified"
- raise AssertionError(msg)
- return precision_rounding
-
-
- def float_round(value, precision_digits=None, precision_rounding=None, rounding_method='HALF-UP'):
- """Return ``value`` rounded to ``precision_digits`` decimal digits,
- minimizing IEEE-754 floating point representation errors, and applying
- the tie-breaking rule selected with ``rounding_method``, by default
- HALF-UP (away from zero).
- Precision must be given by ``precision_digits`` or ``precision_rounding``,
- not both!
-
- :param float value: the value to round
- :param int precision_digits: number of fractional digits to round to.
- :param float precision_rounding: decimal number representing the minimum
- non-zero value at the desired precision (for example, 0.01 for a
- 2-digit precision).
- :param rounding_method: the rounding method used:
- - 'HALF-UP' will round to the closest number with ties going away from zero.
- - 'HALF-DOWN' will round to the closest number with ties going towards zero.
- - 'HALF_EVEN' will round to the closest number with ties going to the closest
- even number.
- - 'UP' will always round away from 0.
- - 'DOWN' will always round towards 0.
- :return: rounded float
- """
- rounding_factor = _float_check_precision(precision_digits=precision_digits,
- precision_rounding=precision_rounding)
- if rounding_factor == 0 or value == 0:
- return 0.0
-
- # NORMALIZE - ROUND - DENORMALIZE
- # In order to easily support rounding to arbitrary 'steps' (e.g. coin values),
- # we normalize the value before rounding it as an integer, and de-normalize
- # after rounding: e.g. float_round(1.3, precision_rounding=.5) == 1.5
- def normalize(val):
- return val / rounding_factor
-
- def denormalize(val):
- return val * rounding_factor
-
- # inverting small rounding factors reduces rounding errors
- if rounding_factor < 1:
- rounding_factor = float_invert(rounding_factor)
- normalize, denormalize = denormalize, normalize
-
- normalized_value = normalize(value)
-
- # Due to IEEE-754 float/double representation limits, the approximation of the
- # real value may be slightly below the tie limit, resulting in an error of
- # 1 unit in the last place (ulp) after rounding.
- # For example 2.675 == 2.6749999999999998.
- # To correct this, we add a very small epsilon value, scaled to the
- # the order of magnitude of the value, to tip the tie-break in the right
- # direction.
- # Credit: discussion with OpenERP community members on bug 882036
- epsilon_magnitude = math.log2(abs(normalized_value))
- # `2**(epsilon_magnitude - 52)` would be the minimal size, but we increase it to be
- # more tolerant of inaccuracies accumulated after multiple floating point operations
- epsilon = 2**(epsilon_magnitude - 50)
-
- match rounding_method:
- case 'HALF-UP': # 0.5 rounds away from 0
- result = round(normalized_value + math.copysign(epsilon, normalized_value))
- case 'HALF-EVEN': # 0.5 rounds towards closest even number
- integral = math.floor(normalized_value)
- remainder = abs(normalized_value - integral)
- is_half = abs(0.5 - remainder) < epsilon
- # if is_half & integral is odd, add odd bit to make it even
- result = integral + (integral & 1) if is_half else round(normalized_value)
- case 'HALF-DOWN': # 0.5 rounds towards 0
- result = round(normalized_value - math.copysign(epsilon, normalized_value))
- case 'UP': # round to number furthest from zero
- result = math.trunc(normalized_value + math.copysign(1 - epsilon, normalized_value))
- case 'DOWN': # round to number closest to zero
- result = math.trunc(normalized_value + math.copysign(epsilon, normalized_value))
- case _:
- msg = f"unknown rounding method: {rounding_method}"
- raise ValueError(msg)
-
- return denormalize(result)
-
-
- def float_is_zero(value, precision_digits=None, precision_rounding=None):
- """Returns true if ``value`` is small enough to be treated as
- zero at the given precision (smaller than the corresponding *epsilon*).
- The precision (``10**-precision_digits`` or ``precision_rounding``)
- is used as the zero *epsilon*: values less than that are considered
- to be zero.
- Precision must be given by ``precision_digits`` or ``precision_rounding``,
- not both!
-
- Warning: ``float_is_zero(value1-value2)`` is not equivalent to
- ``float_compare(value1,value2) == 0``, as the former will round after
- computing the difference, while the latter will round before, giving
- different results for e.g. 0.006 and 0.002 at 2 digits precision.
-
- :param int precision_digits: number of fractional digits to round to.
- :param float precision_rounding: decimal number representing the minimum
- non-zero value at the desired precision (for example, 0.01 for a
- 2-digit precision).
- :param float value: value to compare with the precision's zero
- :return: True if ``value`` is considered zero
- """
- epsilon = _float_check_precision(precision_digits=precision_digits,
- precision_rounding=precision_rounding)
- return value == 0.0 or abs(float_round(value, precision_rounding=epsilon)) < epsilon
-
-
- def float_compare(value1, value2, precision_digits=None, precision_rounding=None):
- """Compare ``value1`` and ``value2`` after rounding them according to the
- given precision. A value is considered lower/greater than another value
- if their rounded value is different. This is not the same as having a
- non-zero difference!
- Precision must be given by ``precision_digits`` or ``precision_rounding``,
- not both!
-
- Example: 1.432 and 1.431 are equal at 2 digits precision,
- so this method would return 0
- However 0.006 and 0.002 are considered different (this method returns 1)
- because they respectively round to 0.01 and 0.0, even though
- 0.006-0.002 = 0.004 which would be considered zero at 2 digits precision.
-
- Warning: ``float_is_zero(value1-value2)`` is not equivalent to
- ``float_compare(value1,value2) == 0``, as the former will round after
- computing the difference, while the latter will round before, giving
- different results for e.g. 0.006 and 0.002 at 2 digits precision.
-
- :param float value1: first value to compare
- :param float value2: second value to compare
- :param int precision_digits: number of fractional digits to round to.
- :param float precision_rounding: decimal number representing the minimum
- non-zero value at the desired precision (for example, 0.01 for a
- 2-digit precision).
- :return: (resp.) -1, 0 or 1, if ``value1`` is (resp.) lower than,
- equal to, or greater than ``value2``, at the given precision.
- """
- rounding_factor = _float_check_precision(precision_digits=precision_digits,
- precision_rounding=precision_rounding)
- # equal numbers round equally, so we can skip that step
- # doing this after _float_check_precision to validate parameters first
- if value1 == value2:
- return 0
- value1 = float_round(value1, precision_rounding=rounding_factor)
- value2 = float_round(value2, precision_rounding=rounding_factor)
- delta = value1 - value2
- if float_is_zero(delta, precision_rounding=rounding_factor):
- return 0
- return -1 if delta < 0.0 else 1
-
-
- def float_repr(value, precision_digits):
- """Returns a string representation of a float with the
- given number of fractional digits. This should not be
- used to perform a rounding operation (this is done via
- :func:`~.float_round`), but only to produce a suitable
- string representation for a float.
-
- :param float value:
- :param int precision_digits: number of fractional digits to include in the output
- """
- # Can't use str() here because it seems to have an intrinsic
- # rounding to 12 significant digits, which causes a loss of
- # precision. e.g. str(123456789.1234) == str(123456789.123)!!
- return "%.*f" % (precision_digits, value)
-
-
- def float_split_str(value, precision_digits):
- """Splits the given float 'value' in its unitary and decimal parts,
- returning each of them as a string, rounding the value using
- the provided ``precision_digits`` argument.
-
- The length of the string returned for decimal places will always
- be equal to ``precision_digits``, adding zeros at the end if needed.
-
- In case ``precision_digits`` is zero, an empty string is returned for
- the decimal places.
-
- Examples:
- 1.432 with precision 2 => ('1', '43')
- 1.49 with precision 1 => ('1', '5')
- 1.1 with precision 3 => ('1', '100')
- 1.12 with precision 0 => ('1', '')
-
- :param float value: value to split.
- :param int precision_digits: number of fractional digits to round to.
- :return: returns the tuple(<unitary part>, <decimal part>) of the given value
- :rtype: tuple(str, str)
- """
- value = float_round(value, precision_digits=precision_digits)
- value_repr = float_repr(value, precision_digits)
- return tuple(value_repr.split('.')) if precision_digits else (value_repr, '')
-
-
- def float_split(value, precision_digits):
- """ same as float_split_str() except that it returns the unitary and decimal
- parts as integers instead of strings. In case ``precision_digits`` is zero,
- 0 is always returned as decimal part.
-
- :rtype: tuple(int, int)
- """
- units, cents = float_split_str(value, precision_digits)
- if not cents:
- return int(units), 0
- return int(units), int(cents)
-
-
- def json_float_round(value, precision_digits, rounding_method='HALF-UP'):
- """Not suitable for float calculations! Similar to float_repr except that it
- returns a float suitable for json dump
-
- This may be necessary to produce "exact" representations of rounded float
- values during serialization, such as what is done by `json.dumps()`.
- Unfortunately `json.dumps` does not allow any form of custom float representation,
- nor any custom types, everything is serialized from the basic JSON types.
-
- :param int precision_digits: number of fractional digits to round to.
- :param rounding_method: the rounding method used: 'HALF-UP', 'UP' or 'DOWN',
- the first one rounding up to the closest number with the rule that
- number>=0.5 is rounded up to 1, the second always rounding up and the
- latest one always rounding down.
- :return: a rounded float value that must not be used for calculations, but
- is ready to be serialized in JSON with minimal chances of
- representation errors.
- """
- rounded_value = float_round(value, precision_digits=precision_digits, rounding_method=rounding_method)
- rounded_repr = float_repr(rounded_value, precision_digits=precision_digits)
- # As of Python 3.1, rounded_repr should be the shortest representation for our
- # rounded float, so we create a new float whose repr is expected
- # to be the same value, or a value that is semantically identical
- # and will be used in the json serialization.
- # e.g. if rounded_repr is '3.1750', the new float repr could be 3.175
- # but not 3.174999999999322452.
- # Cfr. bpo-1580: https://bugs.python.org/issue1580
- return float(rounded_repr)
-
-
- _INVERTDICT = {
- 1e-1: 1e+1, 1e-2: 1e+2, 1e-3: 1e+3, 1e-4: 1e+4, 1e-5: 1e+5,
- 1e-6: 1e+6, 1e-7: 1e+7, 1e-8: 1e+8, 1e-9: 1e+9, 1e-10: 1e+10,
- 2e-1: 5e+0, 2e-2: 5e+1, 2e-3: 5e+2, 2e-4: 5e+3, 2e-5: 5e+4,
- 2e-6: 5e+5, 2e-7: 5e+6, 2e-8: 5e+7, 2e-9: 5e+8, 2e-10: 5e+9,
- 5e-1: 2e+0, 5e-2: 2e+1, 5e-3: 2e+2, 5e-4: 2e+3, 5e-5: 2e+4,
- 5e-6: 2e+5, 5e-7: 2e+6, 5e-8: 2e+7, 5e-9: 2e+8, 5e-10: 2e+9,
- }
-
-
- def float_invert(value):
- """Inverts a floating point number with increased accuracy.
-
- :param float value: value to invert.
- :param bool store: whether store the result in memory for future calls.
- :return: rounded float.
- """
- result = _INVERTDICT.get(value)
- if result is None:
- coefficient, exponent = f'{value:.15e}'.split('e')
- # invert exponent by changing sign, and coefficient by dividing by its square
- result = float(f'{coefficient}e{-int(exponent)}') / float(coefficient)**2
- return result
-
-
- if __name__ == "__main__":
-
- import time
- start = time.time()
- count = 0
-
- def try_round(amount, expected, precision_digits=3):
- result = float_repr(float_round(amount, precision_digits=precision_digits),
- precision_digits=precision_digits)
- if result != expected:
- print('###!!! Rounding error: got %s , expected %s' % (result, expected))
- return complex(1, 1)
- return 1
-
- # Extended float range test, inspired by Cloves Almeida's test on bug #882036.
- fractions = [.0, .015, .01499, .675, .67499, .4555, .4555, .45555]
- expecteds = ['.00', '.02', '.01', '.68', '.67', '.46', '.456', '.4556']
- precisions = [2, 2, 2, 2, 2, 2, 3, 4]
- for magnitude in range(7):
- for frac, exp, prec in zip(fractions, expecteds, precisions):
- for sign in [-1, 1]:
- for x in range(0, 10000, 97):
- n = x * 10**magnitude
- f = sign * (n + frac)
- f_exp = ('-' if f != 0 and sign == -1 else '') + str(n) + exp
- count += try_round(f, f_exp, precision_digits=prec)
-
- stop = time.time()
- count, errors = int(count.real), int(count.imag)
-
- # Micro-bench results:
- # 47130 round calls in 0.422306060791 secs, with Python 2.6.7 on Core i3 x64
- # with decimal:
- # 47130 round calls in 6.612248100021 secs, with Python 2.6.7 on Core i3 x64
- print(count, " round calls, ", errors, "errors, done in ", (stop-start), 'secs')
|