|
- /*-------------------------------------------------------------------------
- *
- * nbtree.h
- * header file for postgres btree access method implementation.
- *
- *
- * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
- * Portions Copyright (c) 1994, Regents of the University of California
- *
- * src/include/access/nbtree.h
- *
- *-------------------------------------------------------------------------
- */
- #ifndef NBTREE_H
- #define NBTREE_H
-
- #include "access/amapi.h"
- #include "access/itup.h"
- #include "access/sdir.h"
- #include "access/xlogreader.h"
- #include "catalog/pg_index.h"
- #include "lib/stringinfo.h"
- #include "storage/bufmgr.h"
- #include "storage/shm_toc.h"
-
- /* There's room for a 16-bit vacuum cycle ID in BTPageOpaqueData */
- typedef uint16 BTCycleId;
-
- /*
- * BTPageOpaqueData -- At the end of every page, we store a pointer
- * to both siblings in the tree. This is used to do forward/backward
- * index scans. The next-page link is also critical for recovery when
- * a search has navigated to the wrong page due to concurrent page splits
- * or deletions; see src/backend/access/nbtree/README for more info.
- *
- * In addition, we store the page's btree level (counting upwards from
- * zero at a leaf page) as well as some flag bits indicating the page type
- * and status. If the page is deleted, we replace the level with the
- * next-transaction-ID value indicating when it is safe to reclaim the page.
- *
- * We also store a "vacuum cycle ID". When a page is split while VACUUM is
- * processing the index, a nonzero value associated with the VACUUM run is
- * stored into both halves of the split page. (If VACUUM is not running,
- * both pages receive zero cycleids.) This allows VACUUM to detect whether
- * a page was split since it started, with a small probability of false match
- * if the page was last split some exact multiple of MAX_BT_CYCLE_ID VACUUMs
- * ago. Also, during a split, the BTP_SPLIT_END flag is cleared in the left
- * (original) page, and set in the right page, but only if the next page
- * to its right has a different cycleid.
- *
- * NOTE: the BTP_LEAF flag bit is redundant since level==0 could be tested
- * instead.
- */
-
- typedef struct BTPageOpaqueData
- {
- BlockNumber btpo_prev; /* left sibling, or P_NONE if leftmost */
- BlockNumber btpo_next; /* right sibling, or P_NONE if rightmost */
- union
- {
- uint32 level; /* tree level --- zero for leaf pages */
- TransactionId xact; /* next transaction ID, if deleted */
- } btpo;
- uint16 btpo_flags; /* flag bits, see below */
- BTCycleId btpo_cycleid; /* vacuum cycle ID of latest split */
- } BTPageOpaqueData;
-
- typedef BTPageOpaqueData *BTPageOpaque;
-
- /* Bits defined in btpo_flags */
- #define BTP_LEAF (1 << 0) /* leaf page, i.e. not internal page */
- #define BTP_ROOT (1 << 1) /* root page (has no parent) */
- #define BTP_DELETED (1 << 2) /* page has been deleted from tree */
- #define BTP_META (1 << 3) /* meta-page */
- #define BTP_HALF_DEAD (1 << 4) /* empty, but still in tree */
- #define BTP_SPLIT_END (1 << 5) /* rightmost page of split group */
- #define BTP_HAS_GARBAGE (1 << 6) /* page has LP_DEAD tuples */
- #define BTP_INCOMPLETE_SPLIT (1 << 7) /* right sibling's downlink is missing */
-
- /*
- * The max allowed value of a cycle ID is a bit less than 64K. This is
- * for convenience of pg_filedump and similar utilities: we want to use
- * the last 2 bytes of special space as an index type indicator, and
- * restricting cycle ID lets btree use that space for vacuum cycle IDs
- * while still allowing index type to be identified.
- */
- #define MAX_BT_CYCLE_ID 0xFF7F
-
-
- /*
- * The Meta page is always the first page in the btree index.
- * Its primary purpose is to point to the location of the btree root page.
- * We also point to the "fast" root, which is the current effective root;
- * see README for discussion.
- */
-
- typedef struct BTMetaPageData
- {
- uint32 btm_magic; /* should contain BTREE_MAGIC */
- uint32 btm_version; /* nbtree version (always <= BTREE_VERSION) */
- BlockNumber btm_root; /* current root location */
- uint32 btm_level; /* tree level of the root page */
- BlockNumber btm_fastroot; /* current "fast" root location */
- uint32 btm_fastlevel; /* tree level of the "fast" root page */
- /* remaining fields only valid when btm_version >= BTREE_NOVAC_VERSION */
- TransactionId btm_oldest_btpo_xact; /* oldest btpo_xact among all deleted
- * pages */
- float8 btm_last_cleanup_num_heap_tuples; /* number of heap tuples
- * during last cleanup */
- } BTMetaPageData;
-
- #define BTPageGetMeta(p) \
- ((BTMetaPageData *) PageGetContents(p))
-
- /*
- * The current Btree version is 4. That's what you'll get when you create
- * a new index.
- *
- * Btree version 3 was used in PostgreSQL v11. It is mostly the same as
- * version 4, but heap TIDs were not part of the keyspace. Index tuples
- * with duplicate keys could be stored in any order. We continue to
- * support reading and writing Btree versions 2 and 3, so that they don't
- * need to be immediately re-indexed at pg_upgrade. In order to get the
- * new heapkeyspace semantics, however, a REINDEX is needed.
- *
- * Btree version 2 is mostly the same as version 3. There are two new
- * fields in the metapage that were introduced in version 3. A version 2
- * metapage will be automatically upgraded to version 3 on the first
- * insert to it. INCLUDE indexes cannot use version 2.
- */
- #define BTREE_METAPAGE 0 /* first page is meta */
- #define BTREE_MAGIC 0x053162 /* magic number in metapage */
- #define BTREE_VERSION 4 /* current version number */
- #define BTREE_MIN_VERSION 2 /* minimal supported version number */
- #define BTREE_NOVAC_VERSION 3 /* minimal version with all meta fields */
-
- /*
- * Maximum size of a btree index entry, including its tuple header.
- *
- * We actually need to be able to fit three items on every page,
- * so restrict any one item to 1/3 the per-page available space.
- *
- * There are rare cases where _bt_truncate() will need to enlarge
- * a heap index tuple to make space for a tiebreaker heap TID
- * attribute, which we account for here.
- */
- #define BTMaxItemSize(page) \
- MAXALIGN_DOWN((PageGetPageSize(page) - \
- MAXALIGN(SizeOfPageHeaderData + \
- 3*sizeof(ItemIdData) + \
- 3*sizeof(ItemPointerData)) - \
- MAXALIGN(sizeof(BTPageOpaqueData))) / 3)
- #define BTMaxItemSizeNoHeapTid(page) \
- MAXALIGN_DOWN((PageGetPageSize(page) - \
- MAXALIGN(SizeOfPageHeaderData + 3*sizeof(ItemIdData)) - \
- MAXALIGN(sizeof(BTPageOpaqueData))) / 3)
-
- /*
- * The leaf-page fillfactor defaults to 90% but is user-adjustable.
- * For pages above the leaf level, we use a fixed 70% fillfactor.
- * The fillfactor is applied during index build and when splitting
- * a rightmost page; when splitting non-rightmost pages we try to
- * divide the data equally. When splitting a page that's entirely
- * filled with a single value (duplicates), the effective leaf-page
- * fillfactor is 96%, regardless of whether the page is a rightmost
- * page.
- */
- #define BTREE_MIN_FILLFACTOR 10
- #define BTREE_DEFAULT_FILLFACTOR 90
- #define BTREE_NONLEAF_FILLFACTOR 70
- #define BTREE_SINGLEVAL_FILLFACTOR 96
-
- /*
- * In general, the btree code tries to localize its knowledge about
- * page layout to a couple of routines. However, we need a special
- * value to indicate "no page number" in those places where we expect
- * page numbers. We can use zero for this because we never need to
- * make a pointer to the metadata page.
- */
-
- #define P_NONE 0
-
- /*
- * Macros to test whether a page is leftmost or rightmost on its tree level,
- * as well as other state info kept in the opaque data.
- */
- #define P_LEFTMOST(opaque) ((opaque)->btpo_prev == P_NONE)
- #define P_RIGHTMOST(opaque) ((opaque)->btpo_next == P_NONE)
- #define P_ISLEAF(opaque) (((opaque)->btpo_flags & BTP_LEAF) != 0)
- #define P_ISROOT(opaque) (((opaque)->btpo_flags & BTP_ROOT) != 0)
- #define P_ISDELETED(opaque) (((opaque)->btpo_flags & BTP_DELETED) != 0)
- #define P_ISMETA(opaque) (((opaque)->btpo_flags & BTP_META) != 0)
- #define P_ISHALFDEAD(opaque) (((opaque)->btpo_flags & BTP_HALF_DEAD) != 0)
- #define P_IGNORE(opaque) (((opaque)->btpo_flags & (BTP_DELETED|BTP_HALF_DEAD)) != 0)
- #define P_HAS_GARBAGE(opaque) (((opaque)->btpo_flags & BTP_HAS_GARBAGE) != 0)
- #define P_INCOMPLETE_SPLIT(opaque) (((opaque)->btpo_flags & BTP_INCOMPLETE_SPLIT) != 0)
-
- /*
- * Lehman and Yao's algorithm requires a ``high key'' on every non-rightmost
- * page. The high key is not a tuple that is used to visit the heap. It is
- * a pivot tuple (see "Notes on B-Tree tuple format" below for definition).
- * The high key on a page is required to be greater than or equal to any
- * other key that appears on the page. If we find ourselves trying to
- * insert a key that is strictly > high key, we know we need to move right
- * (this should only happen if the page was split since we examined the
- * parent page).
- *
- * Our insertion algorithm guarantees that we can use the initial least key
- * on our right sibling as the high key. Once a page is created, its high
- * key changes only if the page is split.
- *
- * On a non-rightmost page, the high key lives in item 1 and data items
- * start in item 2. Rightmost pages have no high key, so we store data
- * items beginning in item 1.
- */
-
- #define P_HIKEY ((OffsetNumber) 1)
- #define P_FIRSTKEY ((OffsetNumber) 2)
- #define P_FIRSTDATAKEY(opaque) (P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY)
-
- /*
- * Notes on B-Tree tuple format, and key and non-key attributes:
- *
- * INCLUDE B-Tree indexes have non-key attributes. These are extra
- * attributes that may be returned by index-only scans, but do not influence
- * the order of items in the index (formally, non-key attributes are not
- * considered to be part of the key space). Non-key attributes are only
- * present in leaf index tuples whose item pointers actually point to heap
- * tuples (non-pivot tuples). _bt_check_natts() enforces the rules
- * described here.
- *
- * Non-pivot tuple format:
- *
- * t_tid | t_info | key values | INCLUDE columns, if any
- *
- * t_tid points to the heap TID, which is a tiebreaker key column as of
- * BTREE_VERSION 4. Currently, the INDEX_ALT_TID_MASK status bit is never
- * set for non-pivot tuples.
- *
- * All other types of index tuples ("pivot" tuples) only have key columns,
- * since pivot tuples only exist to represent how the key space is
- * separated. In general, any B-Tree index that has more than one level
- * (i.e. any index that does not just consist of a metapage and a single
- * leaf root page) must have some number of pivot tuples, since pivot
- * tuples are used for traversing the tree. Suffix truncation can omit
- * trailing key columns when a new pivot is formed, which makes minus
- * infinity their logical value. Since BTREE_VERSION 4 indexes treat heap
- * TID as a trailing key column that ensures that all index tuples are
- * physically unique, it is necessary to represent heap TID as a trailing
- * key column in pivot tuples, though very often this can be truncated
- * away, just like any other key column. (Actually, the heap TID is
- * omitted rather than truncated, since its representation is different to
- * the non-pivot representation.)
- *
- * Pivot tuple format:
- *
- * t_tid | t_info | key values | [heap TID]
- *
- * We store the number of columns present inside pivot tuples by abusing
- * their t_tid offset field, since pivot tuples never need to store a real
- * offset (downlinks only need to store a block number in t_tid). The
- * offset field only stores the number of columns/attributes when the
- * INDEX_ALT_TID_MASK bit is set, which doesn't count the trailing heap
- * TID column sometimes stored in pivot tuples -- that's represented by
- * the presence of BT_HEAP_TID_ATTR. The INDEX_ALT_TID_MASK bit in t_info
- * is always set on BTREE_VERSION 4. BT_HEAP_TID_ATTR can only be set on
- * BTREE_VERSION 4.
- *
- * In version 3 indexes, the INDEX_ALT_TID_MASK flag might not be set in
- * pivot tuples. In that case, the number of key columns is implicitly
- * the same as the number of key columns in the index. It is not usually
- * set on version 2 indexes, which predate the introduction of INCLUDE
- * indexes. (Only explicitly truncated pivot tuples explicitly represent
- * the number of key columns on versions 2 and 3, whereas all pivot tuples
- * are formed using truncation on version 4. A version 2 index will have
- * it set for an internal page negative infinity item iff internal page
- * split occurred after upgrade to Postgres 11+.)
- *
- * The 12 least significant offset bits from t_tid are used to represent
- * the number of columns in INDEX_ALT_TID_MASK tuples, leaving 4 status
- * bits (BT_RESERVED_OFFSET_MASK bits), 3 of which that are reserved for
- * future use. BT_N_KEYS_OFFSET_MASK should be large enough to store any
- * number of columns/attributes <= INDEX_MAX_KEYS.
- *
- * Note well: The macros that deal with the number of attributes in tuples
- * assume that a tuple with INDEX_ALT_TID_MASK set must be a pivot tuple,
- * and that a tuple without INDEX_ALT_TID_MASK set must be a non-pivot
- * tuple (or must have the same number of attributes as the index has
- * generally in the case of !heapkeyspace indexes). They will need to be
- * updated if non-pivot tuples ever get taught to use INDEX_ALT_TID_MASK
- * for something else.
- */
- #define INDEX_ALT_TID_MASK INDEX_AM_RESERVED_BIT
-
- /* Item pointer offset bits */
- #define BT_RESERVED_OFFSET_MASK 0xF000
- #define BT_N_KEYS_OFFSET_MASK 0x0FFF
- #define BT_HEAP_TID_ATTR 0x1000
-
- /* Get/set downlink block number */
- #define BTreeInnerTupleGetDownLink(itup) \
- ItemPointerGetBlockNumberNoCheck(&((itup)->t_tid))
- #define BTreeInnerTupleSetDownLink(itup, blkno) \
- ItemPointerSetBlockNumber(&((itup)->t_tid), (blkno))
-
- /*
- * Get/set leaf page highkey's link. During the second phase of deletion, the
- * target leaf page's high key may point to an ancestor page (at all other
- * times, the leaf level high key's link is not used). See the nbtree README
- * for full details.
- */
- #define BTreeTupleGetTopParent(itup) \
- ItemPointerGetBlockNumberNoCheck(&((itup)->t_tid))
- #define BTreeTupleSetTopParent(itup, blkno) \
- do { \
- ItemPointerSetBlockNumber(&((itup)->t_tid), (blkno)); \
- BTreeTupleSetNAtts((itup), 0); \
- } while(0)
-
- /*
- * Get/set number of attributes within B-tree index tuple.
- *
- * Note that this does not include an implicit tiebreaker heap TID
- * attribute, if any. Note also that the number of key attributes must be
- * explicitly represented in all heapkeyspace pivot tuples.
- */
- #define BTreeTupleGetNAtts(itup, rel) \
- ( \
- (itup)->t_info & INDEX_ALT_TID_MASK ? \
- ( \
- ItemPointerGetOffsetNumberNoCheck(&(itup)->t_tid) & BT_N_KEYS_OFFSET_MASK \
- ) \
- : \
- IndexRelationGetNumberOfAttributes(rel) \
- )
- #define BTreeTupleSetNAtts(itup, n) \
- do { \
- (itup)->t_info |= INDEX_ALT_TID_MASK; \
- ItemPointerSetOffsetNumber(&(itup)->t_tid, (n) & BT_N_KEYS_OFFSET_MASK); \
- } while(0)
-
- /*
- * Get tiebreaker heap TID attribute, if any. Macro works with both pivot
- * and non-pivot tuples, despite differences in how heap TID is represented.
- */
- #define BTreeTupleGetHeapTID(itup) \
- ( \
- (itup)->t_info & INDEX_ALT_TID_MASK && \
- (ItemPointerGetOffsetNumberNoCheck(&(itup)->t_tid) & BT_HEAP_TID_ATTR) != 0 ? \
- ( \
- (ItemPointer) (((char *) (itup) + IndexTupleSize(itup)) - \
- sizeof(ItemPointerData)) \
- ) \
- : (itup)->t_info & INDEX_ALT_TID_MASK ? NULL : (ItemPointer) &((itup)->t_tid) \
- )
- /*
- * Set the heap TID attribute for a tuple that uses the INDEX_ALT_TID_MASK
- * representation (currently limited to pivot tuples)
- */
- #define BTreeTupleSetAltHeapTID(itup) \
- do { \
- Assert((itup)->t_info & INDEX_ALT_TID_MASK); \
- ItemPointerSetOffsetNumber(&(itup)->t_tid, \
- ItemPointerGetOffsetNumberNoCheck(&(itup)->t_tid) | BT_HEAP_TID_ATTR); \
- } while(0)
-
- /*
- * Operator strategy numbers for B-tree have been moved to access/stratnum.h,
- * because many places need to use them in ScanKeyInit() calls.
- *
- * The strategy numbers are chosen so that we can commute them by
- * subtraction, thus:
- */
- #define BTCommuteStrategyNumber(strat) (BTMaxStrategyNumber + 1 - (strat))
-
- /*
- * When a new operator class is declared, we require that the user
- * supply us with an amproc procedure (BTORDER_PROC) for determining
- * whether, for two keys a and b, a < b, a = b, or a > b. This routine
- * must return < 0, 0, > 0, respectively, in these three cases.
- *
- * To facilitate accelerated sorting, an operator class may choose to
- * offer a second procedure (BTSORTSUPPORT_PROC). For full details, see
- * src/include/utils/sortsupport.h.
- *
- * To support window frames defined by "RANGE offset PRECEDING/FOLLOWING",
- * an operator class may choose to offer a third amproc procedure
- * (BTINRANGE_PROC), independently of whether it offers sortsupport.
- * For full details, see doc/src/sgml/btree.sgml.
- */
-
- #define BTORDER_PROC 1
- #define BTSORTSUPPORT_PROC 2
- #define BTINRANGE_PROC 3
- #define BTNProcs 3
-
- /*
- * We need to be able to tell the difference between read and write
- * requests for pages, in order to do locking correctly.
- */
-
- #define BT_READ BUFFER_LOCK_SHARE
- #define BT_WRITE BUFFER_LOCK_EXCLUSIVE
-
- /*
- * BTStackData -- As we descend a tree, we push the (location, downlink)
- * pairs from internal pages onto a private stack. If we split a
- * leaf, we use this stack to walk back up the tree and insert data
- * into parent pages (and possibly to split them, too). Lehman and
- * Yao's update algorithm guarantees that under no circumstances can
- * our private stack give us an irredeemably bad picture up the tree.
- * Again, see the paper for details.
- */
-
- typedef struct BTStackData
- {
- BlockNumber bts_blkno;
- OffsetNumber bts_offset;
- BlockNumber bts_btentry;
- struct BTStackData *bts_parent;
- } BTStackData;
-
- typedef BTStackData *BTStack;
-
- /*
- * BTScanInsertData is the btree-private state needed to find an initial
- * position for an indexscan, or to insert new tuples -- an "insertion
- * scankey" (not to be confused with a search scankey). It's used to descend
- * a B-Tree using _bt_search.
- *
- * heapkeyspace indicates if we expect all keys in the index to be physically
- * unique because heap TID is used as a tiebreaker attribute, and if index may
- * have truncated key attributes in pivot tuples. This is actually a property
- * of the index relation itself (not an indexscan). heapkeyspace indexes are
- * indexes whose version is >= version 4. It's convenient to keep this close
- * by, rather than accessing the metapage repeatedly.
- *
- * anynullkeys indicates if any of the keys had NULL value when scankey was
- * built from index tuple (note that already-truncated tuple key attributes
- * set NULL as a placeholder key value, which also affects value of
- * anynullkeys). This is a convenience for unique index non-pivot tuple
- * insertion, which usually temporarily unsets scantid, but shouldn't iff
- * anynullkeys is true. Value generally matches non-pivot tuple's HasNulls
- * bit, but may not when inserting into an INCLUDE index (tuple header value
- * is affected by the NULL-ness of both key and non-key attributes).
- *
- * When nextkey is false (the usual case), _bt_search and _bt_binsrch will
- * locate the first item >= scankey. When nextkey is true, they will locate
- * the first item > scan key.
- *
- * pivotsearch is set to true by callers that want to re-find a leaf page
- * using a scankey built from a leaf page's high key. Most callers set this
- * to false.
- *
- * scantid is the heap TID that is used as a final tiebreaker attribute. It
- * is set to NULL when index scan doesn't need to find a position for a
- * specific physical tuple. Must be set when inserting new tuples into
- * heapkeyspace indexes, since every tuple in the tree unambiguously belongs
- * in one exact position (it's never set with !heapkeyspace indexes, though).
- * Despite the representational difference, nbtree search code considers
- * scantid to be just another insertion scankey attribute.
- *
- * scankeys is an array of scan key entries for attributes that are compared
- * before scantid (user-visible attributes). keysz is the size of the array.
- * During insertion, there must be a scan key for every attribute, but when
- * starting a regular index scan some can be omitted. The array is used as a
- * flexible array member, though it's sized in a way that makes it possible to
- * use stack allocations. See nbtree/README for full details.
- */
- typedef struct BTScanInsertData
- {
- bool heapkeyspace;
- bool anynullkeys;
- bool nextkey;
- bool pivotsearch;
- ItemPointer scantid; /* tiebreaker for scankeys */
- int keysz; /* Size of scankeys array */
- ScanKeyData scankeys[INDEX_MAX_KEYS]; /* Must appear last */
- } BTScanInsertData;
-
- typedef BTScanInsertData *BTScanInsert;
-
- /*
- * BTInsertStateData is a working area used during insertion.
- *
- * This is filled in after descending the tree to the first leaf page the new
- * tuple might belong on. Tracks the current position while performing
- * uniqueness check, before we have determined which exact page to insert
- * to.
- *
- * (This should be private to nbtinsert.c, but it's also used by
- * _bt_binsrch_insert)
- */
- typedef struct BTInsertStateData
- {
- IndexTuple itup; /* Item we're inserting */
- Size itemsz; /* Size of itup -- should be MAXALIGN()'d */
- BTScanInsert itup_key; /* Insertion scankey */
-
- /* Buffer containing leaf page we're likely to insert itup on */
- Buffer buf;
-
- /*
- * Cache of bounds within the current buffer. Only used for insertions
- * where _bt_check_unique is called. See _bt_binsrch_insert and
- * _bt_findinsertloc for details.
- */
- bool bounds_valid;
- OffsetNumber low;
- OffsetNumber stricthigh;
- } BTInsertStateData;
-
- typedef BTInsertStateData *BTInsertState;
-
- /*
- * BTScanOpaqueData is the btree-private state needed for an indexscan.
- * This consists of preprocessed scan keys (see _bt_preprocess_keys() for
- * details of the preprocessing), information about the current location
- * of the scan, and information about the marked location, if any. (We use
- * BTScanPosData to represent the data needed for each of current and marked
- * locations.) In addition we can remember some known-killed index entries
- * that must be marked before we can move off the current page.
- *
- * Index scans work a page at a time: we pin and read-lock the page, identify
- * all the matching items on the page and save them in BTScanPosData, then
- * release the read-lock while returning the items to the caller for
- * processing. This approach minimizes lock/unlock traffic. Note that we
- * keep the pin on the index page until the caller is done with all the items
- * (this is needed for VACUUM synchronization, see nbtree/README). When we
- * are ready to step to the next page, if the caller has told us any of the
- * items were killed, we re-lock the page to mark them killed, then unlock.
- * Finally we drop the pin and step to the next page in the appropriate
- * direction.
- *
- * If we are doing an index-only scan, we save the entire IndexTuple for each
- * matched item, otherwise only its heap TID and offset. The IndexTuples go
- * into a separate workspace array; each BTScanPosItem stores its tuple's
- * offset within that array.
- */
-
- typedef struct BTScanPosItem /* what we remember about each match */
- {
- ItemPointerData heapTid; /* TID of referenced heap item */
- OffsetNumber indexOffset; /* index item's location within page */
- LocationIndex tupleOffset; /* IndexTuple's offset in workspace, if any */
- } BTScanPosItem;
-
- typedef struct BTScanPosData
- {
- Buffer buf; /* if valid, the buffer is pinned */
-
- XLogRecPtr lsn; /* pos in the WAL stream when page was read */
- BlockNumber currPage; /* page referenced by items array */
- BlockNumber nextPage; /* page's right link when we scanned it */
-
- /*
- * moreLeft and moreRight track whether we think there may be matching
- * index entries to the left and right of the current page, respectively.
- * We can clear the appropriate one of these flags when _bt_checkkeys()
- * returns continuescan = false.
- */
- bool moreLeft;
- bool moreRight;
-
- /*
- * If we are doing an index-only scan, nextTupleOffset is the first free
- * location in the associated tuple storage workspace.
- */
- int nextTupleOffset;
-
- /*
- * The items array is always ordered in index order (ie, increasing
- * indexoffset). When scanning backwards it is convenient to fill the
- * array back-to-front, so we start at the last slot and fill downwards.
- * Hence we need both a first-valid-entry and a last-valid-entry counter.
- * itemIndex is a cursor showing which entry was last returned to caller.
- */
- int firstItem; /* first valid index in items[] */
- int lastItem; /* last valid index in items[] */
- int itemIndex; /* current index in items[] */
-
- BTScanPosItem items[MaxIndexTuplesPerPage]; /* MUST BE LAST */
- } BTScanPosData;
-
- typedef BTScanPosData *BTScanPos;
-
- #define BTScanPosIsPinned(scanpos) \
- ( \
- AssertMacro(BlockNumberIsValid((scanpos).currPage) || \
- !BufferIsValid((scanpos).buf)), \
- BufferIsValid((scanpos).buf) \
- )
- #define BTScanPosUnpin(scanpos) \
- do { \
- ReleaseBuffer((scanpos).buf); \
- (scanpos).buf = InvalidBuffer; \
- } while (0)
- #define BTScanPosUnpinIfPinned(scanpos) \
- do { \
- if (BTScanPosIsPinned(scanpos)) \
- BTScanPosUnpin(scanpos); \
- } while (0)
-
- #define BTScanPosIsValid(scanpos) \
- ( \
- AssertMacro(BlockNumberIsValid((scanpos).currPage) || \
- !BufferIsValid((scanpos).buf)), \
- BlockNumberIsValid((scanpos).currPage) \
- )
- #define BTScanPosInvalidate(scanpos) \
- do { \
- (scanpos).currPage = InvalidBlockNumber; \
- (scanpos).nextPage = InvalidBlockNumber; \
- (scanpos).buf = InvalidBuffer; \
- (scanpos).lsn = InvalidXLogRecPtr; \
- (scanpos).nextTupleOffset = 0; \
- } while (0)
-
- /* We need one of these for each equality-type SK_SEARCHARRAY scan key */
- typedef struct BTArrayKeyInfo
- {
- int scan_key; /* index of associated key in arrayKeyData */
- int cur_elem; /* index of current element in elem_values */
- int mark_elem; /* index of marked element in elem_values */
- int num_elems; /* number of elems in current array value */
- Datum *elem_values; /* array of num_elems Datums */
- } BTArrayKeyInfo;
-
- typedef struct BTScanOpaqueData
- {
- /* these fields are set by _bt_preprocess_keys(): */
- bool qual_ok; /* false if qual can never be satisfied */
- int numberOfKeys; /* number of preprocessed scan keys */
- ScanKey keyData; /* array of preprocessed scan keys */
-
- /* workspace for SK_SEARCHARRAY support */
- ScanKey arrayKeyData; /* modified copy of scan->keyData */
- int numArrayKeys; /* number of equality-type array keys (-1 if
- * there are any unsatisfiable array keys) */
- int arrayKeyCount; /* count indicating number of array scan keys
- * processed */
- BTArrayKeyInfo *arrayKeys; /* info about each equality-type array key */
- MemoryContext arrayContext; /* scan-lifespan context for array data */
-
- /* info about killed items if any (killedItems is NULL if never used) */
- int *killedItems; /* currPos.items indexes of killed items */
- int numKilled; /* number of currently stored items */
-
- /*
- * If we are doing an index-only scan, these are the tuple storage
- * workspaces for the currPos and markPos respectively. Each is of size
- * BLCKSZ, so it can hold as much as a full page's worth of tuples.
- */
- char *currTuples; /* tuple storage for currPos */
- char *markTuples; /* tuple storage for markPos */
-
- /*
- * If the marked position is on the same page as current position, we
- * don't use markPos, but just keep the marked itemIndex in markItemIndex
- * (all the rest of currPos is valid for the mark position). Hence, to
- * determine if there is a mark, first look at markItemIndex, then at
- * markPos.
- */
- int markItemIndex; /* itemIndex, or -1 if not valid */
-
- /* keep these last in struct for efficiency */
- BTScanPosData currPos; /* current position data */
- BTScanPosData markPos; /* marked position, if any */
- } BTScanOpaqueData;
-
- typedef BTScanOpaqueData *BTScanOpaque;
-
- /*
- * We use some private sk_flags bits in preprocessed scan keys. We're allowed
- * to use bits 16-31 (see skey.h). The uppermost bits are copied from the
- * index's indoption[] array entry for the index attribute.
- */
- #define SK_BT_REQFWD 0x00010000 /* required to continue forward scan */
- #define SK_BT_REQBKWD 0x00020000 /* required to continue backward scan */
- #define SK_BT_INDOPTION_SHIFT 24 /* must clear the above bits */
- #define SK_BT_DESC (INDOPTION_DESC << SK_BT_INDOPTION_SHIFT)
- #define SK_BT_NULLS_FIRST (INDOPTION_NULLS_FIRST << SK_BT_INDOPTION_SHIFT)
-
- /*
- * Constant definition for progress reporting. Phase numbers must match
- * btbuildphasename.
- */
- /* PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE is 1 (see progress.h) */
- #define PROGRESS_BTREE_PHASE_INDEXBUILD_TABLESCAN 2
- #define PROGRESS_BTREE_PHASE_PERFORMSORT_1 3
- #define PROGRESS_BTREE_PHASE_PERFORMSORT_2 4
- #define PROGRESS_BTREE_PHASE_LEAF_LOAD 5
-
- /*
- * external entry points for btree, in nbtree.c
- */
- extern void btbuildempty(Relation index);
- extern bool btinsert(Relation rel, Datum *values, bool *isnull,
- ItemPointer ht_ctid, Relation heapRel,
- IndexUniqueCheck checkUnique,
- struct IndexInfo *indexInfo);
- extern IndexScanDesc btbeginscan(Relation rel, int nkeys, int norderbys);
- extern Size btestimateparallelscan(void);
- extern void btinitparallelscan(void *target);
- extern bool btgettuple(IndexScanDesc scan, ScanDirection dir);
- extern int64 btgetbitmap(IndexScanDesc scan, TIDBitmap *tbm);
- extern void btrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys,
- ScanKey orderbys, int norderbys);
- extern void btparallelrescan(IndexScanDesc scan);
- extern void btendscan(IndexScanDesc scan);
- extern void btmarkpos(IndexScanDesc scan);
- extern void btrestrpos(IndexScanDesc scan);
- extern IndexBulkDeleteResult *btbulkdelete(IndexVacuumInfo *info,
- IndexBulkDeleteResult *stats,
- IndexBulkDeleteCallback callback,
- void *callback_state);
- extern IndexBulkDeleteResult *btvacuumcleanup(IndexVacuumInfo *info,
- IndexBulkDeleteResult *stats);
- extern bool btcanreturn(Relation index, int attno);
-
- /*
- * prototypes for internal functions in nbtree.c
- */
- extern bool _bt_parallel_seize(IndexScanDesc scan, BlockNumber *pageno);
- extern void _bt_parallel_release(IndexScanDesc scan, BlockNumber scan_page);
- extern void _bt_parallel_done(IndexScanDesc scan);
- extern void _bt_parallel_advance_array_keys(IndexScanDesc scan);
-
- /*
- * prototypes for functions in nbtinsert.c
- */
- extern bool _bt_doinsert(Relation rel, IndexTuple itup,
- IndexUniqueCheck checkUnique, Relation heapRel);
- extern Buffer _bt_getstackbuf(Relation rel, BTStack stack);
- extern void _bt_finish_split(Relation rel, Buffer bbuf, BTStack stack);
-
- /*
- * prototypes for functions in nbtsplitloc.c
- */
- extern OffsetNumber _bt_findsplitloc(Relation rel, Page page,
- OffsetNumber newitemoff, Size newitemsz, IndexTuple newitem,
- bool *newitemonleft);
-
- /*
- * prototypes for functions in nbtpage.c
- */
- extern void _bt_initmetapage(Page page, BlockNumber rootbknum, uint32 level);
- extern void _bt_update_meta_cleanup_info(Relation rel,
- TransactionId oldestBtpoXact, float8 numHeapTuples);
- extern void _bt_upgrademetapage(Page page);
- extern Buffer _bt_getroot(Relation rel, int access);
- extern Buffer _bt_gettrueroot(Relation rel);
- extern int _bt_getrootheight(Relation rel);
- extern bool _bt_heapkeyspace(Relation rel);
- extern void _bt_checkpage(Relation rel, Buffer buf);
- extern Buffer _bt_getbuf(Relation rel, BlockNumber blkno, int access);
- extern Buffer _bt_relandgetbuf(Relation rel, Buffer obuf,
- BlockNumber blkno, int access);
- extern void _bt_relbuf(Relation rel, Buffer buf);
- extern void _bt_pageinit(Page page, Size size);
- extern bool _bt_page_recyclable(Page page);
- extern void _bt_delitems_delete(Relation rel, Buffer buf,
- OffsetNumber *itemnos, int nitems, Relation heapRel);
- extern void _bt_delitems_vacuum(Relation rel, Buffer buf,
- OffsetNumber *itemnos, int nitems,
- BlockNumber lastBlockVacuumed);
- extern uint32 _bt_pagedel(Relation rel, Buffer leafbuf,
- TransactionId *oldestBtpoXact);
-
- /*
- * prototypes for functions in nbtsearch.c
- */
- extern BTStack _bt_search(Relation rel, BTScanInsert key, Buffer *bufP,
- int access, Snapshot snapshot);
- extern Buffer _bt_moveright(Relation rel, BTScanInsert key, Buffer buf,
- bool forupdate, BTStack stack, int access, Snapshot snapshot);
- extern OffsetNumber _bt_binsrch_insert(Relation rel, BTInsertState insertstate);
- extern int32 _bt_compare(Relation rel, BTScanInsert key, Page page, OffsetNumber offnum);
- extern bool _bt_first(IndexScanDesc scan, ScanDirection dir);
- extern bool _bt_next(IndexScanDesc scan, ScanDirection dir);
- extern Buffer _bt_get_endpoint(Relation rel, uint32 level, bool rightmost,
- Snapshot snapshot);
-
- /*
- * prototypes for functions in nbtutils.c
- */
- extern BTScanInsert _bt_mkscankey(Relation rel, IndexTuple itup);
- extern void _bt_freestack(BTStack stack);
- extern void _bt_preprocess_array_keys(IndexScanDesc scan);
- extern void _bt_start_array_keys(IndexScanDesc scan, ScanDirection dir);
- extern bool _bt_advance_array_keys(IndexScanDesc scan, ScanDirection dir);
- extern void _bt_mark_array_keys(IndexScanDesc scan);
- extern void _bt_restore_array_keys(IndexScanDesc scan);
- extern void _bt_preprocess_keys(IndexScanDesc scan);
- extern bool _bt_checkkeys(IndexScanDesc scan, IndexTuple tuple,
- int tupnatts, ScanDirection dir, bool *continuescan);
- extern void _bt_killitems(IndexScanDesc scan);
- extern BTCycleId _bt_vacuum_cycleid(Relation rel);
- extern BTCycleId _bt_start_vacuum(Relation rel);
- extern void _bt_end_vacuum(Relation rel);
- extern void _bt_end_vacuum_callback(int code, Datum arg);
- extern Size BTreeShmemSize(void);
- extern void BTreeShmemInit(void);
- extern bytea *btoptions(Datum reloptions, bool validate);
- extern bool btproperty(Oid index_oid, int attno,
- IndexAMProperty prop, const char *propname,
- bool *res, bool *isnull);
- extern char *btbuildphasename(int64 phasenum);
- extern IndexTuple _bt_truncate(Relation rel, IndexTuple lastleft,
- IndexTuple firstright, BTScanInsert itup_key);
- extern int _bt_keep_natts_fast(Relation rel, IndexTuple lastleft,
- IndexTuple firstright);
- extern bool _bt_check_natts(Relation rel, bool heapkeyspace, Page page,
- OffsetNumber offnum);
- extern void _bt_check_third_page(Relation rel, Relation heap,
- bool needheaptidspace, Page page, IndexTuple newtup);
-
- /*
- * prototypes for functions in nbtvalidate.c
- */
- extern bool btvalidate(Oid opclassoid);
-
- /*
- * prototypes for functions in nbtsort.c
- */
- extern IndexBuildResult *btbuild(Relation heap, Relation index,
- struct IndexInfo *indexInfo);
- extern void _bt_parallel_build_main(dsm_segment *seg, shm_toc *toc);
-
- #endif /* NBTREE_H */
|