gooderp18绿色标准版
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

820 lines
29KB

  1. /*-------------------------------------------------------------------------
  2. *
  3. * htup_details.h
  4. * POSTGRES heap tuple header definitions.
  5. *
  6. *
  7. * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
  8. * Portions Copyright (c) 1994, Regents of the University of California
  9. *
  10. * src/include/access/htup_details.h
  11. *
  12. *-------------------------------------------------------------------------
  13. */
  14. #ifndef HTUP_DETAILS_H
  15. #define HTUP_DETAILS_H
  16. #include "access/htup.h"
  17. #include "access/tupdesc.h"
  18. #include "access/tupmacs.h"
  19. #include "access/transam.h"
  20. #include "storage/bufpage.h"
  21. /*
  22. * MaxTupleAttributeNumber limits the number of (user) columns in a tuple.
  23. * The key limit on this value is that the size of the fixed overhead for
  24. * a tuple, plus the size of the null-values bitmap (at 1 bit per column),
  25. * plus MAXALIGN alignment, must fit into t_hoff which is uint8. On most
  26. * machines the upper limit without making t_hoff wider would be a little
  27. * over 1700. We use round numbers here and for MaxHeapAttributeNumber
  28. * so that alterations in HeapTupleHeaderData layout won't change the
  29. * supported max number of columns.
  30. */
  31. #define MaxTupleAttributeNumber 1664 /* 8 * 208 */
  32. /*
  33. * MaxHeapAttributeNumber limits the number of (user) columns in a table.
  34. * This should be somewhat less than MaxTupleAttributeNumber. It must be
  35. * at least one less, else we will fail to do UPDATEs on a maximal-width
  36. * table (because UPDATE has to form working tuples that include CTID).
  37. * In practice we want some additional daylight so that we can gracefully
  38. * support operations that add hidden "resjunk" columns, for example
  39. * SELECT * FROM wide_table ORDER BY foo, bar, baz.
  40. * In any case, depending on column data types you will likely be running
  41. * into the disk-block-based limit on overall tuple size if you have more
  42. * than a thousand or so columns. TOAST won't help.
  43. */
  44. #define MaxHeapAttributeNumber 1600 /* 8 * 200 */
  45. /*
  46. * Heap tuple header. To avoid wasting space, the fields should be
  47. * laid out in such a way as to avoid structure padding.
  48. *
  49. * Datums of composite types (row types) share the same general structure
  50. * as on-disk tuples, so that the same routines can be used to build and
  51. * examine them. However the requirements are slightly different: a Datum
  52. * does not need any transaction visibility information, and it does need
  53. * a length word and some embedded type information. We can achieve this
  54. * by overlaying the xmin/cmin/xmax/cmax/xvac fields of a heap tuple
  55. * with the fields needed in the Datum case. Typically, all tuples built
  56. * in-memory will be initialized with the Datum fields; but when a tuple is
  57. * about to be inserted in a table, the transaction fields will be filled,
  58. * overwriting the datum fields.
  59. *
  60. * The overall structure of a heap tuple looks like:
  61. * fixed fields (HeapTupleHeaderData struct)
  62. * nulls bitmap (if HEAP_HASNULL is set in t_infomask)
  63. * alignment padding (as needed to make user data MAXALIGN'd)
  64. * object ID (if HEAP_HASOID_OLD is set in t_infomask, not created
  65. * anymore)
  66. * user data fields
  67. *
  68. * We store five "virtual" fields Xmin, Cmin, Xmax, Cmax, and Xvac in three
  69. * physical fields. Xmin and Xmax are always really stored, but Cmin, Cmax
  70. * and Xvac share a field. This works because we know that Cmin and Cmax
  71. * are only interesting for the lifetime of the inserting and deleting
  72. * transaction respectively. If a tuple is inserted and deleted in the same
  73. * transaction, we store a "combo" command id that can be mapped to the real
  74. * cmin and cmax, but only by use of local state within the originating
  75. * backend. See combocid.c for more details. Meanwhile, Xvac is only set by
  76. * old-style VACUUM FULL, which does not have any command sub-structure and so
  77. * does not need either Cmin or Cmax. (This requires that old-style VACUUM
  78. * FULL never try to move a tuple whose Cmin or Cmax is still interesting,
  79. * ie, an insert-in-progress or delete-in-progress tuple.)
  80. *
  81. * A word about t_ctid: whenever a new tuple is stored on disk, its t_ctid
  82. * is initialized with its own TID (location). If the tuple is ever updated,
  83. * its t_ctid is changed to point to the replacement version of the tuple. Or
  84. * if the tuple is moved from one partition to another, due to an update of
  85. * the partition key, t_ctid is set to a special value to indicate that
  86. * (see ItemPointerSetMovedPartitions). Thus, a tuple is the latest version
  87. * of its row iff XMAX is invalid or
  88. * t_ctid points to itself (in which case, if XMAX is valid, the tuple is
  89. * either locked or deleted). One can follow the chain of t_ctid links
  90. * to find the newest version of the row, unless it was moved to a different
  91. * partition. Beware however that VACUUM might
  92. * erase the pointed-to (newer) tuple before erasing the pointing (older)
  93. * tuple. Hence, when following a t_ctid link, it is necessary to check
  94. * to see if the referenced slot is empty or contains an unrelated tuple.
  95. * Check that the referenced tuple has XMIN equal to the referencing tuple's
  96. * XMAX to verify that it is actually the descendant version and not an
  97. * unrelated tuple stored into a slot recently freed by VACUUM. If either
  98. * check fails, one may assume that there is no live descendant version.
  99. *
  100. * t_ctid is sometimes used to store a speculative insertion token, instead
  101. * of a real TID. A speculative token is set on a tuple that's being
  102. * inserted, until the inserter is sure that it wants to go ahead with the
  103. * insertion. Hence a token should only be seen on a tuple with an XMAX
  104. * that's still in-progress, or invalid/aborted. The token is replaced with
  105. * the tuple's real TID when the insertion is confirmed. One should never
  106. * see a speculative insertion token while following a chain of t_ctid links,
  107. * because they are not used on updates, only insertions.
  108. *
  109. * Following the fixed header fields, the nulls bitmap is stored (beginning
  110. * at t_bits). The bitmap is *not* stored if t_infomask shows that there
  111. * are no nulls in the tuple. If an OID field is present (as indicated by
  112. * t_infomask), then it is stored just before the user data, which begins at
  113. * the offset shown by t_hoff. Note that t_hoff must be a multiple of
  114. * MAXALIGN.
  115. */
  116. typedef struct HeapTupleFields
  117. {
  118. TransactionId t_xmin; /* inserting xact ID */
  119. TransactionId t_xmax; /* deleting or locking xact ID */
  120. union
  121. {
  122. CommandId t_cid; /* inserting or deleting command ID, or both */
  123. TransactionId t_xvac; /* old-style VACUUM FULL xact ID */
  124. } t_field3;
  125. } HeapTupleFields;
  126. typedef struct DatumTupleFields
  127. {
  128. int32 datum_len_; /* varlena header (do not touch directly!) */
  129. int32 datum_typmod; /* -1, or identifier of a record type */
  130. Oid datum_typeid; /* composite type OID, or RECORDOID */
  131. /*
  132. * datum_typeid cannot be a domain over composite, only plain composite,
  133. * even if the datum is meant as a value of a domain-over-composite type.
  134. * This is in line with the general principle that CoerceToDomain does not
  135. * change the physical representation of the base type value.
  136. *
  137. * Note: field ordering is chosen with thought that Oid might someday
  138. * widen to 64 bits.
  139. */
  140. } DatumTupleFields;
  141. struct HeapTupleHeaderData
  142. {
  143. union
  144. {
  145. HeapTupleFields t_heap;
  146. DatumTupleFields t_datum;
  147. } t_choice;
  148. ItemPointerData t_ctid; /* current TID of this or newer tuple (or a
  149. * speculative insertion token) */
  150. /* Fields below here must match MinimalTupleData! */
  151. #define FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK2 2
  152. uint16 t_infomask2; /* number of attributes + various flags */
  153. #define FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK 3
  154. uint16 t_infomask; /* various flag bits, see below */
  155. #define FIELDNO_HEAPTUPLEHEADERDATA_HOFF 4
  156. uint8 t_hoff; /* sizeof header incl. bitmap, padding */
  157. /* ^ - 23 bytes - ^ */
  158. #define FIELDNO_HEAPTUPLEHEADERDATA_BITS 5
  159. bits8 t_bits[FLEXIBLE_ARRAY_MEMBER]; /* bitmap of NULLs */
  160. /* MORE DATA FOLLOWS AT END OF STRUCT */
  161. };
  162. /* typedef appears in htup.h */
  163. #define SizeofHeapTupleHeader offsetof(HeapTupleHeaderData, t_bits)
  164. /*
  165. * information stored in t_infomask:
  166. */
  167. #define HEAP_HASNULL 0x0001 /* has null attribute(s) */
  168. #define HEAP_HASVARWIDTH 0x0002 /* has variable-width attribute(s) */
  169. #define HEAP_HASEXTERNAL 0x0004 /* has external stored attribute(s) */
  170. #define HEAP_HASOID_OLD 0x0008 /* has an object-id field */
  171. #define HEAP_XMAX_KEYSHR_LOCK 0x0010 /* xmax is a key-shared locker */
  172. #define HEAP_COMBOCID 0x0020 /* t_cid is a combo cid */
  173. #define HEAP_XMAX_EXCL_LOCK 0x0040 /* xmax is exclusive locker */
  174. #define HEAP_XMAX_LOCK_ONLY 0x0080 /* xmax, if valid, is only a locker */
  175. /* xmax is a shared locker */
  176. #define HEAP_XMAX_SHR_LOCK (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)
  177. #define HEAP_LOCK_MASK (HEAP_XMAX_SHR_LOCK | HEAP_XMAX_EXCL_LOCK | \
  178. HEAP_XMAX_KEYSHR_LOCK)
  179. #define HEAP_XMIN_COMMITTED 0x0100 /* t_xmin committed */
  180. #define HEAP_XMIN_INVALID 0x0200 /* t_xmin invalid/aborted */
  181. #define HEAP_XMIN_FROZEN (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID)
  182. #define HEAP_XMAX_COMMITTED 0x0400 /* t_xmax committed */
  183. #define HEAP_XMAX_INVALID 0x0800 /* t_xmax invalid/aborted */
  184. #define HEAP_XMAX_IS_MULTI 0x1000 /* t_xmax is a MultiXactId */
  185. #define HEAP_UPDATED 0x2000 /* this is UPDATEd version of row */
  186. #define HEAP_MOVED_OFF 0x4000 /* moved to another place by pre-9.0
  187. * VACUUM FULL; kept for binary
  188. * upgrade support */
  189. #define HEAP_MOVED_IN 0x8000 /* moved from another place by pre-9.0
  190. * VACUUM FULL; kept for binary
  191. * upgrade support */
  192. #define HEAP_MOVED (HEAP_MOVED_OFF | HEAP_MOVED_IN)
  193. #define HEAP_XACT_MASK 0xFFF0 /* visibility-related bits */
  194. /*
  195. * A tuple is only locked (i.e. not updated by its Xmax) if the
  196. * HEAP_XMAX_LOCK_ONLY bit is set; or, for pg_upgrade's sake, if the Xmax is
  197. * not a multi and the EXCL_LOCK bit is set.
  198. *
  199. * See also HeapTupleHeaderIsOnlyLocked, which also checks for a possible
  200. * aborted updater transaction.
  201. *
  202. * Beware of multiple evaluations of the argument.
  203. */
  204. #define HEAP_XMAX_IS_LOCKED_ONLY(infomask) \
  205. (((infomask) & HEAP_XMAX_LOCK_ONLY) || \
  206. (((infomask) & (HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK)) == HEAP_XMAX_EXCL_LOCK))
  207. /*
  208. * A tuple that has HEAP_XMAX_IS_MULTI and HEAP_XMAX_LOCK_ONLY but neither of
  209. * XMAX_EXCL_LOCK and XMAX_KEYSHR_LOCK must come from a tuple that was
  210. * share-locked in 9.2 or earlier and then pg_upgrade'd.
  211. *
  212. * In 9.2 and prior, HEAP_XMAX_IS_MULTI was only set when there were multiple
  213. * FOR SHARE lockers of that tuple. That set HEAP_XMAX_LOCK_ONLY (with a
  214. * different name back then) but neither of HEAP_XMAX_EXCL_LOCK and
  215. * HEAP_XMAX_KEYSHR_LOCK. That combination is no longer possible in 9.3 and
  216. * up, so if we see that combination we know for certain that the tuple was
  217. * locked in an earlier release; since all such lockers are gone (they cannot
  218. * survive through pg_upgrade), such tuples can safely be considered not
  219. * locked.
  220. *
  221. * We must not resolve such multixacts locally, because the result would be
  222. * bogus, regardless of where they stand with respect to the current valid
  223. * multixact range.
  224. */
  225. #define HEAP_LOCKED_UPGRADED(infomask) \
  226. ( \
  227. ((infomask) & HEAP_XMAX_IS_MULTI) != 0 && \
  228. ((infomask) & HEAP_XMAX_LOCK_ONLY) != 0 && \
  229. (((infomask) & (HEAP_XMAX_EXCL_LOCK | HEAP_XMAX_KEYSHR_LOCK)) == 0) \
  230. )
  231. /*
  232. * Use these to test whether a particular lock is applied to a tuple
  233. */
  234. #define HEAP_XMAX_IS_SHR_LOCKED(infomask) \
  235. (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_SHR_LOCK)
  236. #define HEAP_XMAX_IS_EXCL_LOCKED(infomask) \
  237. (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_EXCL_LOCK)
  238. #define HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) \
  239. (((infomask) & HEAP_LOCK_MASK) == HEAP_XMAX_KEYSHR_LOCK)
  240. /* turn these all off when Xmax is to change */
  241. #define HEAP_XMAX_BITS (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID | \
  242. HEAP_XMAX_IS_MULTI | HEAP_LOCK_MASK | HEAP_XMAX_LOCK_ONLY)
  243. /*
  244. * information stored in t_infomask2:
  245. */
  246. #define HEAP_NATTS_MASK 0x07FF /* 11 bits for number of attributes */
  247. /* bits 0x1800 are available */
  248. #define HEAP_KEYS_UPDATED 0x2000 /* tuple was updated and key cols
  249. * modified, or tuple deleted */
  250. #define HEAP_HOT_UPDATED 0x4000 /* tuple was HOT-updated */
  251. #define HEAP_ONLY_TUPLE 0x8000 /* this is heap-only tuple */
  252. #define HEAP2_XACT_MASK 0xE000 /* visibility-related bits */
  253. /*
  254. * HEAP_TUPLE_HAS_MATCH is a temporary flag used during hash joins. It is
  255. * only used in tuples that are in the hash table, and those don't need
  256. * any visibility information, so we can overlay it on a visibility flag
  257. * instead of using up a dedicated bit.
  258. */
  259. #define HEAP_TUPLE_HAS_MATCH HEAP_ONLY_TUPLE /* tuple has a join match */
  260. /*
  261. * HeapTupleHeader accessor macros
  262. *
  263. * Note: beware of multiple evaluations of "tup" argument. But the Set
  264. * macros evaluate their other argument only once.
  265. */
  266. /*
  267. * HeapTupleHeaderGetRawXmin returns the "raw" xmin field, which is the xid
  268. * originally used to insert the tuple. However, the tuple might actually
  269. * be frozen (via HeapTupleHeaderSetXminFrozen) in which case the tuple's xmin
  270. * is visible to every snapshot. Prior to PostgreSQL 9.4, we actually changed
  271. * the xmin to FrozenTransactionId, and that value may still be encountered
  272. * on disk.
  273. */
  274. #define HeapTupleHeaderGetRawXmin(tup) \
  275. ( \
  276. (tup)->t_choice.t_heap.t_xmin \
  277. )
  278. #define HeapTupleHeaderGetXmin(tup) \
  279. ( \
  280. HeapTupleHeaderXminFrozen(tup) ? \
  281. FrozenTransactionId : HeapTupleHeaderGetRawXmin(tup) \
  282. )
  283. #define HeapTupleHeaderSetXmin(tup, xid) \
  284. ( \
  285. (tup)->t_choice.t_heap.t_xmin = (xid) \
  286. )
  287. #define HeapTupleHeaderXminCommitted(tup) \
  288. ( \
  289. ((tup)->t_infomask & HEAP_XMIN_COMMITTED) != 0 \
  290. )
  291. #define HeapTupleHeaderXminInvalid(tup) \
  292. ( \
  293. ((tup)->t_infomask & (HEAP_XMIN_COMMITTED|HEAP_XMIN_INVALID)) == \
  294. HEAP_XMIN_INVALID \
  295. )
  296. #define HeapTupleHeaderXminFrozen(tup) \
  297. ( \
  298. ((tup)->t_infomask & (HEAP_XMIN_FROZEN)) == HEAP_XMIN_FROZEN \
  299. )
  300. #define HeapTupleHeaderSetXminCommitted(tup) \
  301. ( \
  302. AssertMacro(!HeapTupleHeaderXminInvalid(tup)), \
  303. ((tup)->t_infomask |= HEAP_XMIN_COMMITTED) \
  304. )
  305. #define HeapTupleHeaderSetXminInvalid(tup) \
  306. ( \
  307. AssertMacro(!HeapTupleHeaderXminCommitted(tup)), \
  308. ((tup)->t_infomask |= HEAP_XMIN_INVALID) \
  309. )
  310. #define HeapTupleHeaderSetXminFrozen(tup) \
  311. ( \
  312. AssertMacro(!HeapTupleHeaderXminInvalid(tup)), \
  313. ((tup)->t_infomask |= HEAP_XMIN_FROZEN) \
  314. )
  315. /*
  316. * HeapTupleHeaderGetRawXmax gets you the raw Xmax field. To find out the Xid
  317. * that updated a tuple, you might need to resolve the MultiXactId if certain
  318. * bits are set. HeapTupleHeaderGetUpdateXid checks those bits and takes care
  319. * to resolve the MultiXactId if necessary. This might involve multixact I/O,
  320. * so it should only be used if absolutely necessary.
  321. */
  322. #define HeapTupleHeaderGetUpdateXid(tup) \
  323. ( \
  324. (!((tup)->t_infomask & HEAP_XMAX_INVALID) && \
  325. ((tup)->t_infomask & HEAP_XMAX_IS_MULTI) && \
  326. !((tup)->t_infomask & HEAP_XMAX_LOCK_ONLY)) ? \
  327. HeapTupleGetUpdateXid(tup) \
  328. : \
  329. HeapTupleHeaderGetRawXmax(tup) \
  330. )
  331. #define HeapTupleHeaderGetRawXmax(tup) \
  332. ( \
  333. (tup)->t_choice.t_heap.t_xmax \
  334. )
  335. #define HeapTupleHeaderSetXmax(tup, xid) \
  336. ( \
  337. (tup)->t_choice.t_heap.t_xmax = (xid) \
  338. )
  339. /*
  340. * HeapTupleHeaderGetRawCommandId will give you what's in the header whether
  341. * it is useful or not. Most code should use HeapTupleHeaderGetCmin or
  342. * HeapTupleHeaderGetCmax instead, but note that those Assert that you can
  343. * get a legitimate result, ie you are in the originating transaction!
  344. */
  345. #define HeapTupleHeaderGetRawCommandId(tup) \
  346. ( \
  347. (tup)->t_choice.t_heap.t_field3.t_cid \
  348. )
  349. /* SetCmin is reasonably simple since we never need a combo CID */
  350. #define HeapTupleHeaderSetCmin(tup, cid) \
  351. do { \
  352. Assert(!((tup)->t_infomask & HEAP_MOVED)); \
  353. (tup)->t_choice.t_heap.t_field3.t_cid = (cid); \
  354. (tup)->t_infomask &= ~HEAP_COMBOCID; \
  355. } while (0)
  356. /* SetCmax must be used after HeapTupleHeaderAdjustCmax; see combocid.c */
  357. #define HeapTupleHeaderSetCmax(tup, cid, iscombo) \
  358. do { \
  359. Assert(!((tup)->t_infomask & HEAP_MOVED)); \
  360. (tup)->t_choice.t_heap.t_field3.t_cid = (cid); \
  361. if (iscombo) \
  362. (tup)->t_infomask |= HEAP_COMBOCID; \
  363. else \
  364. (tup)->t_infomask &= ~HEAP_COMBOCID; \
  365. } while (0)
  366. #define HeapTupleHeaderGetXvac(tup) \
  367. ( \
  368. ((tup)->t_infomask & HEAP_MOVED) ? \
  369. (tup)->t_choice.t_heap.t_field3.t_xvac \
  370. : \
  371. InvalidTransactionId \
  372. )
  373. #define HeapTupleHeaderSetXvac(tup, xid) \
  374. do { \
  375. Assert((tup)->t_infomask & HEAP_MOVED); \
  376. (tup)->t_choice.t_heap.t_field3.t_xvac = (xid); \
  377. } while (0)
  378. #define HeapTupleHeaderIsSpeculative(tup) \
  379. ( \
  380. (ItemPointerGetOffsetNumberNoCheck(&(tup)->t_ctid) == SpecTokenOffsetNumber) \
  381. )
  382. #define HeapTupleHeaderGetSpeculativeToken(tup) \
  383. ( \
  384. AssertMacro(HeapTupleHeaderIsSpeculative(tup)), \
  385. ItemPointerGetBlockNumber(&(tup)->t_ctid) \
  386. )
  387. #define HeapTupleHeaderSetSpeculativeToken(tup, token) \
  388. ( \
  389. ItemPointerSet(&(tup)->t_ctid, token, SpecTokenOffsetNumber) \
  390. )
  391. #define HeapTupleHeaderIndicatesMovedPartitions(tup) \
  392. (ItemPointerGetOffsetNumber(&(tup)->t_ctid) == MovedPartitionsOffsetNumber && \
  393. ItemPointerGetBlockNumberNoCheck(&(tup)->t_ctid) == MovedPartitionsBlockNumber)
  394. #define HeapTupleHeaderSetMovedPartitions(tup) \
  395. ItemPointerSet(&(tup)->t_ctid, MovedPartitionsBlockNumber, MovedPartitionsOffsetNumber)
  396. #define HeapTupleHeaderGetDatumLength(tup) \
  397. VARSIZE(tup)
  398. #define HeapTupleHeaderSetDatumLength(tup, len) \
  399. SET_VARSIZE(tup, len)
  400. #define HeapTupleHeaderGetTypeId(tup) \
  401. ( \
  402. (tup)->t_choice.t_datum.datum_typeid \
  403. )
  404. #define HeapTupleHeaderSetTypeId(tup, typeid) \
  405. ( \
  406. (tup)->t_choice.t_datum.datum_typeid = (typeid) \
  407. )
  408. #define HeapTupleHeaderGetTypMod(tup) \
  409. ( \
  410. (tup)->t_choice.t_datum.datum_typmod \
  411. )
  412. #define HeapTupleHeaderSetTypMod(tup, typmod) \
  413. ( \
  414. (tup)->t_choice.t_datum.datum_typmod = (typmod) \
  415. )
  416. /*
  417. * Note that we stop considering a tuple HOT-updated as soon as it is known
  418. * aborted or the would-be updating transaction is known aborted. For best
  419. * efficiency, check tuple visibility before using this macro, so that the
  420. * INVALID bits will be as up to date as possible.
  421. */
  422. #define HeapTupleHeaderIsHotUpdated(tup) \
  423. ( \
  424. ((tup)->t_infomask2 & HEAP_HOT_UPDATED) != 0 && \
  425. ((tup)->t_infomask & HEAP_XMAX_INVALID) == 0 && \
  426. !HeapTupleHeaderXminInvalid(tup) \
  427. )
  428. #define HeapTupleHeaderSetHotUpdated(tup) \
  429. ( \
  430. (tup)->t_infomask2 |= HEAP_HOT_UPDATED \
  431. )
  432. #define HeapTupleHeaderClearHotUpdated(tup) \
  433. ( \
  434. (tup)->t_infomask2 &= ~HEAP_HOT_UPDATED \
  435. )
  436. #define HeapTupleHeaderIsHeapOnly(tup) \
  437. ( \
  438. ((tup)->t_infomask2 & HEAP_ONLY_TUPLE) != 0 \
  439. )
  440. #define HeapTupleHeaderSetHeapOnly(tup) \
  441. ( \
  442. (tup)->t_infomask2 |= HEAP_ONLY_TUPLE \
  443. )
  444. #define HeapTupleHeaderClearHeapOnly(tup) \
  445. ( \
  446. (tup)->t_infomask2 &= ~HEAP_ONLY_TUPLE \
  447. )
  448. #define HeapTupleHeaderHasMatch(tup) \
  449. ( \
  450. ((tup)->t_infomask2 & HEAP_TUPLE_HAS_MATCH) != 0 \
  451. )
  452. #define HeapTupleHeaderSetMatch(tup) \
  453. ( \
  454. (tup)->t_infomask2 |= HEAP_TUPLE_HAS_MATCH \
  455. )
  456. #define HeapTupleHeaderClearMatch(tup) \
  457. ( \
  458. (tup)->t_infomask2 &= ~HEAP_TUPLE_HAS_MATCH \
  459. )
  460. #define HeapTupleHeaderGetNatts(tup) \
  461. ((tup)->t_infomask2 & HEAP_NATTS_MASK)
  462. #define HeapTupleHeaderSetNatts(tup, natts) \
  463. ( \
  464. (tup)->t_infomask2 = ((tup)->t_infomask2 & ~HEAP_NATTS_MASK) | (natts) \
  465. )
  466. #define HeapTupleHeaderHasExternal(tup) \
  467. (((tup)->t_infomask & HEAP_HASEXTERNAL) != 0)
  468. /*
  469. * BITMAPLEN(NATTS) -
  470. * Computes size of null bitmap given number of data columns.
  471. */
  472. #define BITMAPLEN(NATTS) (((int)(NATTS) + 7) / 8)
  473. /*
  474. * MaxHeapTupleSize is the maximum allowed size of a heap tuple, including
  475. * header and MAXALIGN alignment padding. Basically it's BLCKSZ minus the
  476. * other stuff that has to be on a disk page. Since heap pages use no
  477. * "special space", there's no deduction for that.
  478. *
  479. * NOTE: we allow for the ItemId that must point to the tuple, ensuring that
  480. * an otherwise-empty page can indeed hold a tuple of this size. Because
  481. * ItemIds and tuples have different alignment requirements, don't assume that
  482. * you can, say, fit 2 tuples of size MaxHeapTupleSize/2 on the same page.
  483. */
  484. #define MaxHeapTupleSize (BLCKSZ - MAXALIGN(SizeOfPageHeaderData + sizeof(ItemIdData)))
  485. #define MinHeapTupleSize MAXALIGN(SizeofHeapTupleHeader)
  486. /*
  487. * MaxHeapTuplesPerPage is an upper bound on the number of tuples that can
  488. * fit on one heap page. (Note that indexes could have more, because they
  489. * use a smaller tuple header.) We arrive at the divisor because each tuple
  490. * must be maxaligned, and it must have an associated line pointer.
  491. *
  492. * Note: with HOT, there could theoretically be more line pointers (not actual
  493. * tuples) than this on a heap page. However we constrain the number of line
  494. * pointers to this anyway, to avoid excessive line-pointer bloat and not
  495. * require increases in the size of work arrays.
  496. */
  497. #define MaxHeapTuplesPerPage \
  498. ((int) ((BLCKSZ - SizeOfPageHeaderData) / \
  499. (MAXALIGN(SizeofHeapTupleHeader) + sizeof(ItemIdData))))
  500. /*
  501. * MaxAttrSize is a somewhat arbitrary upper limit on the declared size of
  502. * data fields of char(n) and similar types. It need not have anything
  503. * directly to do with the *actual* upper limit of varlena values, which
  504. * is currently 1Gb (see TOAST structures in postgres.h). I've set it
  505. * at 10Mb which seems like a reasonable number --- tgl 8/6/00.
  506. */
  507. #define MaxAttrSize (10 * 1024 * 1024)
  508. /*
  509. * MinimalTuple is an alternative representation that is used for transient
  510. * tuples inside the executor, in places where transaction status information
  511. * is not required, the tuple rowtype is known, and shaving off a few bytes
  512. * is worthwhile because we need to store many tuples. The representation
  513. * is chosen so that tuple access routines can work with either full or
  514. * minimal tuples via a HeapTupleData pointer structure. The access routines
  515. * see no difference, except that they must not access the transaction status
  516. * or t_ctid fields because those aren't there.
  517. *
  518. * For the most part, MinimalTuples should be accessed via TupleTableSlot
  519. * routines. These routines will prevent access to the "system columns"
  520. * and thereby prevent accidental use of the nonexistent fields.
  521. *
  522. * MinimalTupleData contains a length word, some padding, and fields matching
  523. * HeapTupleHeaderData beginning with t_infomask2. The padding is chosen so
  524. * that offsetof(t_infomask2) is the same modulo MAXIMUM_ALIGNOF in both
  525. * structs. This makes data alignment rules equivalent in both cases.
  526. *
  527. * When a minimal tuple is accessed via a HeapTupleData pointer, t_data is
  528. * set to point MINIMAL_TUPLE_OFFSET bytes before the actual start of the
  529. * minimal tuple --- that is, where a full tuple matching the minimal tuple's
  530. * data would start. This trick is what makes the structs seem equivalent.
  531. *
  532. * Note that t_hoff is computed the same as in a full tuple, hence it includes
  533. * the MINIMAL_TUPLE_OFFSET distance. t_len does not include that, however.
  534. *
  535. * MINIMAL_TUPLE_DATA_OFFSET is the offset to the first useful (non-pad) data
  536. * other than the length word. tuplesort.c and tuplestore.c use this to avoid
  537. * writing the padding to disk.
  538. */
  539. #define MINIMAL_TUPLE_OFFSET \
  540. ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) / MAXIMUM_ALIGNOF * MAXIMUM_ALIGNOF)
  541. #define MINIMAL_TUPLE_PADDING \
  542. ((offsetof(HeapTupleHeaderData, t_infomask2) - sizeof(uint32)) % MAXIMUM_ALIGNOF)
  543. #define MINIMAL_TUPLE_DATA_OFFSET \
  544. offsetof(MinimalTupleData, t_infomask2)
  545. struct MinimalTupleData
  546. {
  547. uint32 t_len; /* actual length of minimal tuple */
  548. char mt_padding[MINIMAL_TUPLE_PADDING];
  549. /* Fields below here must match HeapTupleHeaderData! */
  550. uint16 t_infomask2; /* number of attributes + various flags */
  551. uint16 t_infomask; /* various flag bits, see below */
  552. uint8 t_hoff; /* sizeof header incl. bitmap, padding */
  553. /* ^ - 23 bytes - ^ */
  554. bits8 t_bits[FLEXIBLE_ARRAY_MEMBER]; /* bitmap of NULLs */
  555. /* MORE DATA FOLLOWS AT END OF STRUCT */
  556. };
  557. /* typedef appears in htup.h */
  558. #define SizeofMinimalTupleHeader offsetof(MinimalTupleData, t_bits)
  559. /*
  560. * GETSTRUCT - given a HeapTuple pointer, return address of the user data
  561. */
  562. #define GETSTRUCT(TUP) ((char *) ((TUP)->t_data) + (TUP)->t_data->t_hoff)
  563. /*
  564. * Accessor macros to be used with HeapTuple pointers.
  565. */
  566. #define HeapTupleHasNulls(tuple) \
  567. (((tuple)->t_data->t_infomask & HEAP_HASNULL) != 0)
  568. #define HeapTupleNoNulls(tuple) \
  569. (!((tuple)->t_data->t_infomask & HEAP_HASNULL))
  570. #define HeapTupleHasVarWidth(tuple) \
  571. (((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH) != 0)
  572. #define HeapTupleAllFixed(tuple) \
  573. (!((tuple)->t_data->t_infomask & HEAP_HASVARWIDTH))
  574. #define HeapTupleHasExternal(tuple) \
  575. (((tuple)->t_data->t_infomask & HEAP_HASEXTERNAL) != 0)
  576. #define HeapTupleIsHotUpdated(tuple) \
  577. HeapTupleHeaderIsHotUpdated((tuple)->t_data)
  578. #define HeapTupleSetHotUpdated(tuple) \
  579. HeapTupleHeaderSetHotUpdated((tuple)->t_data)
  580. #define HeapTupleClearHotUpdated(tuple) \
  581. HeapTupleHeaderClearHotUpdated((tuple)->t_data)
  582. #define HeapTupleIsHeapOnly(tuple) \
  583. HeapTupleHeaderIsHeapOnly((tuple)->t_data)
  584. #define HeapTupleSetHeapOnly(tuple) \
  585. HeapTupleHeaderSetHeapOnly((tuple)->t_data)
  586. #define HeapTupleClearHeapOnly(tuple) \
  587. HeapTupleHeaderClearHeapOnly((tuple)->t_data)
  588. /* ----------------
  589. * fastgetattr
  590. *
  591. * Fetch a user attribute's value as a Datum (might be either a
  592. * value, or a pointer into the data area of the tuple).
  593. *
  594. * This must not be used when a system attribute might be requested.
  595. * Furthermore, the passed attnum MUST be valid. Use heap_getattr()
  596. * instead, if in doubt.
  597. *
  598. * This gets called many times, so we macro the cacheable and NULL
  599. * lookups, and call nocachegetattr() for the rest.
  600. * ----------------
  601. */
  602. #if !defined(DISABLE_COMPLEX_MACRO)
  603. #define fastgetattr(tup, attnum, tupleDesc, isnull) \
  604. ( \
  605. AssertMacro((attnum) > 0), \
  606. (*(isnull) = false), \
  607. HeapTupleNoNulls(tup) ? \
  608. ( \
  609. TupleDescAttr((tupleDesc), (attnum)-1)->attcacheoff >= 0 ? \
  610. ( \
  611. fetchatt(TupleDescAttr((tupleDesc), (attnum)-1), \
  612. (char *) (tup)->t_data + (tup)->t_data->t_hoff + \
  613. TupleDescAttr((tupleDesc), (attnum)-1)->attcacheoff)\
  614. ) \
  615. : \
  616. nocachegetattr((tup), (attnum), (tupleDesc)) \
  617. ) \
  618. : \
  619. ( \
  620. att_isnull((attnum)-1, (tup)->t_data->t_bits) ? \
  621. ( \
  622. (*(isnull) = true), \
  623. (Datum)NULL \
  624. ) \
  625. : \
  626. ( \
  627. nocachegetattr((tup), (attnum), (tupleDesc)) \
  628. ) \
  629. ) \
  630. )
  631. #else /* defined(DISABLE_COMPLEX_MACRO) */
  632. extern Datum fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc,
  633. bool *isnull);
  634. #endif /* defined(DISABLE_COMPLEX_MACRO) */
  635. /* ----------------
  636. * heap_getattr
  637. *
  638. * Extract an attribute of a heap tuple and return it as a Datum.
  639. * This works for either system or user attributes. The given attnum
  640. * is properly range-checked.
  641. *
  642. * If the field in question has a NULL value, we return a zero Datum
  643. * and set *isnull == true. Otherwise, we set *isnull == false.
  644. *
  645. * <tup> is the pointer to the heap tuple. <attnum> is the attribute
  646. * number of the column (field) caller wants. <tupleDesc> is a
  647. * pointer to the structure describing the row and all its fields.
  648. * ----------------
  649. */
  650. #define heap_getattr(tup, attnum, tupleDesc, isnull) \
  651. ( \
  652. ((attnum) > 0) ? \
  653. ( \
  654. ((attnum) > (int) HeapTupleHeaderGetNatts((tup)->t_data)) ? \
  655. getmissingattr((tupleDesc), (attnum), (isnull)) \
  656. : \
  657. fastgetattr((tup), (attnum), (tupleDesc), (isnull)) \
  658. ) \
  659. : \
  660. heap_getsysattr((tup), (attnum), (tupleDesc), (isnull)) \
  661. )
  662. /* prototypes for functions in common/heaptuple.c */
  663. extern Size heap_compute_data_size(TupleDesc tupleDesc,
  664. Datum *values, bool *isnull);
  665. extern void heap_fill_tuple(TupleDesc tupleDesc,
  666. Datum *values, bool *isnull,
  667. char *data, Size data_size,
  668. uint16 *infomask, bits8 *bit);
  669. extern bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc);
  670. extern Datum nocachegetattr(HeapTuple tup, int attnum,
  671. TupleDesc att);
  672. extern Datum heap_getsysattr(HeapTuple tup, int attnum, TupleDesc tupleDesc,
  673. bool *isnull);
  674. extern Datum getmissingattr(TupleDesc tupleDesc,
  675. int attnum, bool *isnull);
  676. extern HeapTuple heap_copytuple(HeapTuple tuple);
  677. extern void heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest);
  678. extern Datum heap_copy_tuple_as_datum(HeapTuple tuple, TupleDesc tupleDesc);
  679. extern HeapTuple heap_form_tuple(TupleDesc tupleDescriptor,
  680. Datum *values, bool *isnull);
  681. extern HeapTuple heap_modify_tuple(HeapTuple tuple,
  682. TupleDesc tupleDesc,
  683. Datum *replValues,
  684. bool *replIsnull,
  685. bool *doReplace);
  686. extern HeapTuple heap_modify_tuple_by_cols(HeapTuple tuple,
  687. TupleDesc tupleDesc,
  688. int nCols,
  689. int *replCols,
  690. Datum *replValues,
  691. bool *replIsnull);
  692. extern void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc,
  693. Datum *values, bool *isnull);
  694. extern void heap_freetuple(HeapTuple htup);
  695. extern MinimalTuple heap_form_minimal_tuple(TupleDesc tupleDescriptor,
  696. Datum *values, bool *isnull);
  697. extern void heap_free_minimal_tuple(MinimalTuple mtup);
  698. extern MinimalTuple heap_copy_minimal_tuple(MinimalTuple mtup);
  699. extern HeapTuple heap_tuple_from_minimal_tuple(MinimalTuple mtup);
  700. extern MinimalTuple minimal_tuple_from_heap_tuple(HeapTuple htup);
  701. extern size_t varsize_any(void *p);
  702. extern HeapTuple heap_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc);
  703. extern MinimalTuple minimal_expand_tuple(HeapTuple sourceTuple, TupleDesc tupleDesc);
  704. #endif /* HTUP_DETAILS_H */
上海开阖软件有限公司 沪ICP备12045867号-1